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In this lecture, we will continue the proof of EXP-3 Theorem from the previous lecture, then discuss
lower bounds for adversarial bandits, and finally introduce and define contextual bandit problem.

Proof (proof of EXP-3 Theorem)

Recall the lemma


E[ℓ̂t(a) | pt] = ℓt(a)

[ℓ̂2t (a) | pt] =
ℓ2t (a)
pt(a)

We will apply the first result from the Hedge theorem with a = a∗ and losses ℓt. Since pTt ℓt = ℓt(At) ≤ 1
and the losses are non-negative, we can apply this result. We have,

T∑
t=1

pTt ℓ̂t −
T∑

t=1

ℓ̂t(a
∗) ≤ log(K)

η
+ η

T∑
t=1

pTt ℓ̂t
2
, (1)

where a∗ = argmina∈[K]

∑T
t=1 ℓt(a).

First note that E[ℓ̂t(a∗) | pt] = ℓt(a
∗) by the lemma above. Next, applying the Lemma again,

E[pTt ℓ̂t | pt] = pTt E[ℓ̂t | pt]
= pTt ℓt (by Lemma (i))

= E[ℓt(At) | pt]

Finally, applying the second result of the above lemma,

E[pTt ℓ̂2t | pt] = E[
K∑

a=1

pt(a)ℓ̂
2
t (a) | pt]

=

K∑
a=1

(
pt(a)E[ℓ̂2t (a) | pt]

)
=

K∑
a=1

ℓ2t (a) ≤ K
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Now, taking expectations on both sides of (1), we have

E[LHS] = E

[
T∑

t=1

E[pTt ℓ̂t | pt]−
T∑

t=1

E[ℓ̂t(a∗) | pt]

]

= E

[
T∑

t=1

E[ℓt(At) | pt]−
T∑

t=1

ℓt(a
∗)

]

= E

[
T∑

t=1

ℓt(At)

]
−

T∑
t=1

ℓt(a
∗)

= RT (π, ℓ),

E[RHS] =
log(K)

η
+ η

T∑
t=1

E
[
E[pTt ℓ̂t

2
| pt]

]
≤ log(K)

η
+ ηKT (since E[pTt ℓ̂t

2
| pt] ≤ K)

This proves the first statement of the EXP-3 Theorem, and the second statement follows by optimizing over
η.

1 Lower bounds for adversarial bandits

The following theorem provides a lower bound for the minimax rate of regret of the adversarial multi-armed
bandit problem.

Theorem 1. For the adversarial multi-armed bandit problem, the minimax regret satisfies,

inf
π

sup
ℓ∈[0,1]K×T

RT (π, ℓ) ∈ Ω(
√
KT )

Remark Recall the minimax lower bound for stochastic bandits is

inf
π

sup
ν∈P

Rstoch
T (π, ν) ∈ Ω(

√
KT )

Note that the adversarial bandit problem is is applicable in more general settings than the stochastic bandit
problem. Moreover, the regret definitions are different for the adversarial bandit and stochastic bandit
problems. For the adversarial bandits, the regret depends on the best action in hindsight. While, the regret
of stochastic bandits depends on the arm with the lowest expected mean value. Despite this, we find that
the minimax regret is similar for both problems. This is because the hardest stochastic bandit problems are
as hard as the hardest adversarial bandit problems. In fact, the proof of this lower bound will rely on similar
techniques to the proof of the lower bound for stochastic bandits.

Our proof will consider stochastic losses and show that the expected regret is large. Then, there is at least
one sequence of losses for which the regret should be large.

Proof Let π be given. We will consider two stochastic loss models ν(1) = (ν
(1)
1 , ν

(1)
2 , ..., ν

(1)
K ) and ν(2) =

(ν
(2)
1 , ν

(2)
2 , ..., ν

(2)
K ) to be defined shortly. Let P (1) and P (2) denote the probability distributions of the action

loss sequence (A1, ℓ1(A1), ..., AT , ℓ1(AT )) due to π’s interaction with ν(1) and ν(2) respectively. Let E(1) and
E(2) denote the corresponding expectations.
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Let ν(1) be defined as,

ν
(1)
1 = Bern

(
1

2
− δ

)
and ν

(1)
i = Bern

(
1

2

)
,∀i ̸= 1,

Here, δ < 1/8 is a parameter that we will specify later. So, the means of ν
(1)
1 will be

(
1/2− δ, 1/2, 1/2, ..., 1/2

)
.

Since
∑K

a=1 E[Na,T ] = T , where Na,T =
∑T

t=1 1(At = a), we know

∃j ∈ 2, 3, ...,K s.t. E(1)[Nj,T ] ≤
T

K − 1

. We will next define ν(2) as follows:

ν
(2)
j = Bern

(
1

2
− 2δ

)
and ν

(2)
i = ν

(1)
i ,∀i ̸= j,

So, the means of ν(2) would be (1/2−δ, 1/2, 1/2, ..., 1/2− 2δ︸ ︷︷ ︸
j−th

, ..., 1/2). LetR′
T (π, ℓ) =

∑
t ℓt(At)−mina∈[K]

∑
t ℓt(a)

and let Eπ denote randomness w.r.t. policy, so that RT (π, ℓ) = Eπ[R
′
T (π, ℓ)]. We can now bound the worst-

case regret for policy π as follows:

R⋆(π) = sup
ℓ∈[0,1]K

RT (π, ℓ) = sup
ℓ∈[0,1]K

Eπ[R
′
T (π, ℓ)]

≥ Ei∼Unif({1,2})Eℓ∼ν(i)Eπ[R
′
T (π, ℓ)]

=
1

2
Eπ [Eℓ∼ν(1) [R′

T (π, ℓ)]] +
1

2
Eπ [Eℓ∼ν(2) [R′

T (π, ℓ)]]

where the inequality follows from the fact that i ∼ Unif({1, 2}), ℓ ∼ ν(i) is a distribution of {0, 1}K×T ⊆
[0, 1]K×T and the fact that the maximum is larger than the average. Next, consider

Eℓ∼ν(i) [R′
T (π, ℓ)] = Eℓ∼ν(i)

[
T∑

t=1

ℓt(At)− min
a∈[K]

T∑
t=1

ℓt(a)

≥ Eℓ∼ν(i)

[
T∑

t=1

ℓt(At)

]
− min

a∈[K]
Eℓ∼ν(i)

T∑
t=1

ℓt(a)

= Eℓ∼ν(i)

[
T∑

t=1

ℓt(At)

]
− Tµ⋆(ν(i))

where µ⋆(ν) = min
a∈[K]

EX∼νa
[X]. The inequality is by Jensen’s inequality and noting that the pointwise

minimum is concave, i.e. E[min
i

xi] ≤ min
i

E[xi]. Therefore, we have

Eπ [Eℓ∼ν(i) [R′
T (π, ℓ)]] ≥ EπEℓ∼ν(i)

[
T∑

t=1

ℓt(At)

]
− Tµ⋆(ν(i)) = Rstoc

T (π, ν(i))

here Rstoc
T (π, ν(i)) is the stochastic bandit regret of policy π on the stochastic bandit model ν(i). Therefore,

we have

R⋆(π) ≥ 1

2

(
Rstoc

T (π, ν(1)) +Rstoc
T (π, ν(2))

)
The term inside the paranthesis is similar to the quantity we obtained when proving lower bounds for stochas-
tic bandits. You will complete the remainder of the proof in the homework.You can show (⋆) ∈ Ω(

√
KT ) for

an appropriate choice of δ.
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