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In this lecture, we will introduce online convex optimization. We will first introduce two motivating exam-
ples, the online linear classification, and the expert problem, and give a unified framework for online convex
optimization. Then, we will discuss two methods, Follow the Leader(FTL), and Follow the Regularized
Leader(FTRL). Finally, we will use several examples to show how to choose the regularizer.

1 Examples and Unified Framework

We will first present two examples to show what is online convex optimization. The online linear classification,
and the expert problem.

Example 1 (online linear classification). Let © {# € R?: ||f]|; < 1}. On each round, the learner chooses
some 6; € ©. Simultaneously, the environment picks an instance {x;,y:} € X x ) where the domain
X € RYY = {+1,—1}. Then, the learner incurs the hinge loss ¢;(6;) = max{0,1 — y;0, z;}. Finally, the
learner observes the instance {, y:}, and hence knows the loss for all § € ©. The regret is defined as follows
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Example 2 (The Expert Problem). Given K arms, and denote AK = {p € R : pT1 = 1}. On each round
t, the learner chooses some p; € AX. Simultaneously, the environment picks a loss vector ¢; € [0,1]%. Then,
the learner incurs the loss p; ¢;. Finally, the learner observes the loss vector ¢;, and hence knows the loss for
all p € AK. The regret is defined as follows
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where min,eax Zthl p" 4y = min,e k) Zthl li(a) is easy to see if we take derivative w.r.t. each coordi-
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We will now present a unified framework for online convex optimization.

Definition 1 (Online convex optimization). Consider the following frame. A learner is given a weight space
Q Cc R% On each round t , the learner chooses a weight vector w, € Q. Simultaneously, the environment
chooses a loss function f; : w — R, a mapping from weight space to real line. Then the linear incurs the loss
fie(wy). Finally, the learner observes the loss function fi, and hence knows the value of fi(w) for all w € Q.

In the above framework, if (1) the weight space Q is convex and compact, and (2) the loss function f; at
every round is convez, the framework is called online convex optimization.

Given a horizon T'. The goal is to minimize the regret against the best-fixed weight vector in Q w.r.t.
the policy 7 of choosing the weight vector at each round.
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In example 1, the ¢5-ball is convex and compact, and the hinge loss is convex. In 2, AX is convex and
compact, and the loss p/ £; is a linear function of p; and thus convex.

2 Follow the Regularized Leader

A most straightforward policy is Follow the Leader(FTL). The weight w; is chosen by

t—1
w; € arg min Z fs(w)
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which is the best weight vector based on the observed loss function. However, this is often a bad idea,
as the chosen weight could fluctuate from round to round. Therefore, we will stabilize the FTL by adding a
regularized term A(w)

t—1
w; € arg min {2_:1 fs(w) + A(w)}

We call the above policy with the regularized term Follow the Regularized Leader(FTRL), and we
will give its regret upper bound.

Theorem 3 (Regret Upper Bound for FTRL). For any u € , FTRL satisfies
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N.B. We have not assumed convexity of €, f;, or A in the theorem.

Proof The first inequality is by the definition of regret. For the proof of the second inequality, we denote

t

and let

Consider ®;_; — ®;, and we have

D1 — P = Ft—l(wt) - Ft(wt+1)
= Fi_1(wy) — (Fr—1(weg1) + fr(wegr))
= (Fi—1(wi) = Fy—1(wey1)) — fr(witr))
< —fi(wes)

since Fy_1(w;) < Fy—_1(wiy1), Then we will have

Dp1 — D4+ fe(we) < fi(we) — fe(wegr)
by adding f:(w;) to both sides of the equation. Then we sum both sides from ¢ = 1,..,T, and we will have
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We can compute the values of &1, Py as follows:
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Therefore, we have
T T T
D felw) = fa(u) = Alu ) + min A(w < (felwe) = fi(wign))
t=1 s=1 t=1
and thus
T T
RT(FTRL,i) S Z ft(wt) — Z ft(u)
t;l t=1
< Z (fe(we) = fr(wigr)) + Alu) — glelgA(w)
t=1
O
Remark:

e The above theorem implies that for follow the leader (FTL),
T
Rp(FTRL, f) <Y (filwr) = fi(wiy1)).
=1

o If w; fluctuates frequently, the regret of FTRL/FTL will be bad.

e The purpose of the regularized term A(w) is to stabilize the chosen weight w;.

3 Examples Analysis: How a regularizer is Chosen

To motivate how a regularizer is chosen, we will consider 3 examples for FTL with @ = [0,1] and f; : [0,1] —
[0,1]

3.1 Example 1: FTL with linear losses
First, Let Q = [0, 1]. Then we define f;(w) Yw € Q:

3 ift=1
fi(w) = qw if tisodd, t > 1
1 if ¢t is even

We have:
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Hence, we have the following:

0 iftiseven
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Therefore, we obtain the Upper Bound from the Thm 3:
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The bound given by the theorem is O(T"). Moreover, it is not hard to see that the actual regret is also large.
The total loss of FTL is at least T'— 1. The best action in hindsight will have loss at most % Therefore,
we have Regret > % — 1, and we could see that the Bound on Ry is pretty tight. The linear losses are bad
use case for FTL.

3.2 Example 2: FTL with quadratic losses
Let Q = [0, 1], and we define f;(w),Vw € Q as following;:

w? if w is odd
fi(w) = { e

(1 —w)? if wis even

Similar to the previous example, the best action for a given round oscillates between 0 and 1. However, we
will see that the regret is not large.
First note that the sum of losses can be written as:
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We see that the choices made by FTL do not oscillate much, with w; — % as t — o0o. We have the following
upper bound:

T
Z — fi (Wi41)

1\? 1 1\? 1 1\? 1\?
2 (2) w2 () ()
t s.t tis odd t s.t tis even
T
1
-3 5+(z)

€ O (logT)

3.3 Example 3: FTRL with Linear losses

For our final example, we will revisit the linear losses in the first example, but will add a regularizer to
stabilize the fluctuations. Since quadratic losses achieved small regret, let us try A(w) = %(w — 2)% (n will
be chosen later). We define f; same as in example 1, namely: Yw € Q = [0, 1]:

12w ift=1
fi(w) = qw iftisodd, t >1
1—w iftiseven



Then we have Fy(w):
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Hence we got:
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Then we have the following upper bound on the regret. Define B := max,,co,1] % (w - %)Q—minwe[o’” % (w — 5)2

%. We have,
n
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Next, we decide to choose n = ﬁ Based on the regret’s UB we just showed, we have:

Rr €O (\/T)

Some take-aways from the examples above:
e Linear functions have bad behaviour in FTL due to the instability of the chose w;

e We should add a "nice” regulizer to stabilize oscillations (”nice” means strong convexity here)



