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We will return to contextual bandits next week. Right now, we will continue studying online convex

optimization: A learner is given a convex set, Ω ⊆ Rd, and at each rount-t, the learner chooses an action
wT ∈ Ω. Simultaneously, the environment picks a convex loss function ft : Ω→ R so that the player incurs
the loss ft(wt). We also assume that the player gets to observe all ft’s. So far, we have looked at the frame-
work of Follow-The-Regularized-Leader (FTRL) framework that helps the learner choose an action wt ∈ Ω
such that its regret w.r.t. the best action in hindsight is minimized by introducing an appropriate additive
regularizer term to the losses incurred.

We concluded the last lecture by looking at three examples in order to motivate how to pick these reg-
ularizers. In particular, we saw that Follow-The-Leader (FTL) has bad regret (RT ∈ O(T )) when the
learner uses linear losses whereas FTL does well when using quadratic losses (RT ∈ O(log T )). Next, we saw
that if we were to use linear losses with quadratic regularizers, FTRL actually has better regret compared
to FTL-with-linear-losses (i.e., RT ∈ O(

√
T )). However, it is not clear what type of regularizer to use for

a given loss function. We will now formalize this process of choosing an appropriate regularizer given a
convex loss function so as to ensure good regret bounds under the FTRL framework. Specifically, in this
lecture, we will first present a primer on some properties of convex functions, and then study the framework
of Follow-The-Regularized-Leader (FTRL) with convex losses and strongly convex regularizers.

1 A primer on properties of convex functions

Definition 1 (Convex function). We will present two equivalent definitions of convex functions:

(i.) A function f : Ω→ R is convex if Ω is a convex set for ∀ α ∈ [0, 1], and ∀ u, v ∈ Ω, we have:

f(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v).

(ii.) Equivalently f is convex if ∀ w ∈ Ω,∃ g ∈ Rn, s.t.,∀ w′ ∈ Ω, we have:

f(w′) ≥ f(w) + gT (w′ − w)

Definition 2 (Sub-gradients and sub-differential). We will present the definition for sub-gradient and sub-
differential.

(i.) Any g ∈ Rn which satisfies (ii) in the above definition is called a subgradient of f at w.

(ii.) The set of subgradient of f at w are called sub-differential and denote ∂f(w).

Remark 1.1. Some facts about sub-gradients:

(i.) If f is differentiable, ∂f(w) = {∇f(w)}.
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Figure 1: The blue curve above depicts a convex function, f , whereas the red lines denote the first-order linear
underestimators to this function f . Additionally, these linear underestimators also serve as three of the uncountably-
infinite possible subgradients at the non-different point ((0.8, 0.52)) on function f .

(ii.) 0 ∈ ∂f(w)⇔ w ∈ argmin
w∈Ω

f(w).

(iii.) For finite-valued convex functions1 (f1, f2) and positive scalars (α1, α2), if g1 ∈ ∂f1(w) and g2 ∈
∂f2(w), then α1g1 + α2g2 ∈ ∂h(w), where h = α1g1 + α2g2.

Definition 3 (Strong Convexity). A convex function f : Ω→ R is α-strongly convex in some norm || · ||, if
f(w′) ≥ f(w) + gT (w′ − w) + α

2 ||w
′ − w||2, ∀g ∈ ∂f(w).

Example 1. Some examples of strongly-convex functions:

(i.) f(w) = 1
2 ||w||

2
2 is 1-strongly convex is || · ||2.

(ii.) The negative entropy f(w) =
∑d

i=1 w(i) log(w(i)) is 1-strongly convex in || · ||1, when Ω = ∆d.

Remark 1.2. Some remarks and properties of strongly-convex functions:

(i.) If f is strongly convex in || · ||2, then this is equivalent to saying that f(w)− α
2 ||w||

2
2 is convex. In other

words, f is ‘at least as convex as a quadratic function’.

(ii.) If f is α-strongly convex and f2 is convex, then βf1 + f2 is (βα)-strongly convex ∀β > 0.

(iii.) Let w∗ = argmin
w∈Ω

f(w), where f is α-strongly convex. Then f(w) ≥ f(w∗) + α
2 ||w − w∗||2. The proof

uses the definition of strong convexity and the fact that 0 ∈ ∂f(w∗).

Definition 4 (Dual norm). Given a norm || · ||, its dual norm || · ||∗ is defined as:

||w||∗ = max
||u||≤1

uTw

Example 2. Some examples of dual-norm pairs:

(i.) (|| · ||2, || · ||2)

(ii.) (|| · ||1, || · ||∞)

1Refer to Theorem 8.11 here: https://people.eecs.berkeley.edu/~brecht/opt4ml_book/O4MD_08_Subgradients.pdf
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(iii.) More generally, given that Hölder’s inequality (Lemma 1 below) holds, the following are also dual-norm
pairs when considering ℓα-norms (α > 0):

(|| · ||p, || · ||q), where p, q > 0 and
1

p
+

1

q
= 1

Lemma 1 (Hölder’s inequality). ∀a, b ∈ Rd, aT b ≤ ||a|| · ||b||∗.

2 FTRL with convex losses and strongly-convex regularizers

We will not state our main theorem for FTRL with convex losses and strongly-convex regularizers.

Theorem 2.1. Suppose ft is convex for all t and Λ(w) = 1
ηλ(w) where η > 0 and λ is 1-strongly convex

with respect to some norm || · ||. Let || · ||∗ be the dual-norm of || · ||, and let gt ∈ ∂f(wt), where wt was
chosen by FTRL. Then,

RT (FTRL, f)
∆
=

T∑
t=1

ft(wt)−min
w∈Ω

T∑
t=1

ft(w)

≤ 1

η

(
max
w∈Ω

λ(w)−min
w∈Ω

λ(w)

)
+ η

T∑
t=1

||gt||2∗

Corollary 1. Suppose max
w∈Ω

λ(w)−min
w∈Ω

λ(w) ≤ B and ||gt||∗ ≤ G ∀t. Then, choosing η =
√

B
TG2 , we have

RT ≤
B

η
+ ηTG2 ∈ O(G

√
BT ).

Remark 2.1. Note that the condition ||gt||∗ ≤ G ∀t here means that ft is G-Lipschitz in || · ||∗-norm.

We will do the proof of Theorem 1 after looking at some examples below.
Example 2 (Linear Losses). Let Ω = {w | ||w||2 ≤ 1} and ft(w) = wT ℓ2 where ||ℓt||2 ≤ 1. We will apply
FTRL result with λ(w) = 1

2 ||w||
2
2 which is 1-strongly convex in || · ||2. We will compute the best action on

round-t as follows:

wt = argmin
w∈Ω

t−1∑
s=1

fs(w) + Λ(w)

= argmin
w∈Ω

wT

(
t−1∑
s=1

ℓs(w)

)
+

1

2η
||w||22

= argmin
w∈Ω
||w||22 + 2ηwT

(
t−1∑
s=1

ℓs

)
+ η2

(
t−1∑
s=1

ℓs(w)

)2

= argmin
w∈Ω
||w + η

t−1∑
s=1

ℓs(w)||2

We should choose wt = projΩ

(
−η
∑t−1

s=1 ℓs(w)
)
. This can be implemented via the following update in O(1)

time on each round t:

u0
∆
= 0

ut ←− ut−1 − ηℓt−1

wt ←− argmin
w∈Ω
||w − ut||2
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This gives us the following regret bound:

RT (FTRL, ℓ) ≤ 1

η

(
max
w∈Ω

1

2
||w||22 −min

w∈Ω

1

2
||w||22

)
+ η

T∑
t=1

||ℓt||22

=
1

2η
(1− 0) + η

T∑
t=1

||ℓt||22 (∵ 0 ≤ ||w||2 ≤ 1 ∀ w ∈ Ω)

≤ 1

2η
+ η · T (∵ ||ℓt||2 ≤ 1 ∀ t)

∈ O(
√
T )

(
if η =

1√
T

)
Example 3 (Experts Problem). Ω = ∆K = {p ∈ RK

+ , 1T p = 1}, ft(p) = ℓT p, ℓt ∈ [0, 1]K . Say K ≥ 2.
Let’s try FTRL with λ(w) = 1

2 ||w||
2
2. Doing the same calculations as in the Example above, we get the

following regret bound:

RT (FTRL, ℓ) ≤ B

η
+ η

T∑
t=1

||ℓt||22

Note that B = max
w∈Ω

λ(w)−min
w∈Ω

λ(w) =
1

2

(
1− 1

K

)
≤ 1

2
(∵ K ≥ 2)

and that ||ℓt||22 ≤ K (∵ ℓt ∈ [0, 1]K)

∴ RT (FTRL, ℓ) ≤ 1

2η
+ ηKT

∴ RT (FTRL, ℓ) ∈ O(
√
KT )

(
for η =

√
1

KT

)
Remark 2.2. We observe the following when comparing the regret bounds derived in Example 2 and Example
3 above with that of Hedge as derived in previous lectures:

• Recall that we have the following regret bound for Hedge algorithm:

RT ∈ O(
√
T logK)

• So, it seems that we are not accurately capturing the geometry of the problem here. That is, ℓ2-norm
hypercube scales with K, whereas, say, ℓ∞-norm for [0, 1]K would remain a constant. So, we would
want to use a regularizer that is strongly convex in some norm other than ℓ2-norm; say ℓ1-norm.

• You will be proving in the upcoming homework that using λ(p) = −H(p), which is strongly convex in
the ℓ1-norm, yields a better regret bound here.

B = max
w∈Ω

λ(w)−min
w∈Ω

λ(w) ≤ logK

RT ≤
logK

η
+ η · T · 1 ∈ O(

√
T logK)

Remark 2.3. Thus, if we know/anticipate that {∇ft}t≥1 are small in some dual-norm || · ||∗, then it would
be a good idea to run FTRL with a regularizer Λ which is strongly convex w.r.t. the corresponding norm2

(|| · ||∗)∗ = || · ||.

2dual of the dual-norm, which is the norm itself
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