
CS861: Theoretical Foundations of Machine Learning Lecture 27 - 06/11/2023

University of Wisconsin–Madison, Fall 2023

Lectures 27, 28: Online Gradient Descent, Contextual Bandits

Lecturer: Kirthevasan Kandasamy Scribed by: Haoyue Bai & Deep Patel

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the instructor.

We have been looking at the framework of Follow-The-Regularized Leader (FTRL) that helps the learner
choose actions wt over rounds such that we have smaller cumulative regret w.r.t. the best action in hindsight.
Specifically, we saw how choosing an appropriate regularizer can help obtain small regret when learner incurs
linear losses. We then looked at a more general framework – FTRL with convex losses and strongly convex
regularizers – which, in turn, led us to the following observation:

“If we know/anticipate that {∇ft}t≥1 are small in some dual-norm || · ||∗, then it would be a good
idea to run FTRL with a regularizer Λ which is strongly convex w.r.t. the corresponding norm1

(|| · ||∗)∗ = || · ||.”

We stated this formally as Theorem 1.1 (stated below) which we will prove in today’s lecture. We will
wrap up our discussion on the FTRL framework by applying this result in the context of at Online Gradient

Descent. Finally, we will conclude this lecture and the course with a brief discussion of Contextual Bandits

and a commonly-used algorithm for it – EXP4 Algorithm.

1 FTRL and Online Gradient Descent

Theorem 1.1. If ft is convex, and Λ(w) = 1
ηλ(w) where λ is 1-strongly convex in || · ||, then

RT (FTRL,
¯
f) ≤ 1

η

(
max
w∈Ω

λ(w)−min
w∈Ω

λ(w)

)
+ η

T∑
t=1

||gt||2∗

where gt ∈ ∂ft(wt) and || · ||∗ is the dual-norm of || · ||.

Proof In previous lecture, we proved the following for any u ∈ Ω:

T∑
t=1

ft(wt)−
T∑

t=1

ft(u) ≤
T∑

t=1

ft(wt)−
T∑

t=1

ft(wt+1) +

(
max
w∈Ω

λ(w)−min
w∈Ω

λ(w)

)
Using this, for a given policy π, we can say that:

RT (π,
¯
f) =

T∑
t=1

ft(wt)−
T∑

t=1

ft(w∗)

≤ 1

η

(
max
w∈Ω

λ(w)−min
w∈Ω

λ(w)

)
+

T∑
t=1

(ft(wt)− ft(wt+1))

1dual of the dual-norm, which is the norm itself

1

Therefore, it is sufficient to prove that the following holds on all rounds t:

ft(wt)− ft(wt+1) ≤ η||gt||2∗ (1)

By convexity and as gt ∈ ∂ft(wt), we can write

ft(wt+1) ≥ ft(wt) + gTt (wt+1 − wt)

By Hölder’s inequality, we have

ft(wt)− ft(wt+1) ≤ gTt (wt − wt+1)

⇒ ft(wt)− ft(wt+1) ≤ ||gt||∗||wt − wt+1|| (2)

Let’s now denote Ft
∆
=
∑t

s=1 ft(w) +
1
ηλ(w). Since λ is 1-strongly convex in || · ||-norm by assumption, we

have that Ft is
1
η -strongly convex in ||·||-norm. Note that, by definition, wt+1 minimizes Ft and wt minimizes

Ft−1. Thus, as Ft−1 and Ft are
1
η -strongly convex, we can say that

Ft−1(wt+1) ≥ Ft−1(wt) +
1

2η
||wt+1 − wt||2

Ft(wt) ≥ Ft(wt+1) +
1

2η
||wt − wt+1||2

Summing both the sides above will give us

ft(wt)− ft(wt+1) ≥
1

η
||wt − wt+1||2 (3)

Thus, Equations 2 and 3 imply that
||wt − wt+1|| ≤ η||gt||∗ (4)

Now, combining Equation 2 and Equation 4 gives us the desired inequality as stated above in Equation 1:

ft(wt)− ft(wt+1) ≤ η||gt||2∗

Example 2 (Online Gradient Descent). Let ft be differentiable2 and Ω be a compact, convex set. Choose
λ(w) = 1

2 ||w||
2
2. Let us say that we using the following FTRL framework to obtain wt at the end of each

round-t:

wt ∈ arg min
w∈Ω

t−1∑
s=1

fs(w) +
1

2η
||w||22

Although the actions wt’s obtained as above give us good regret rates, the problem with obtaining the wt’s
this way is that, in general, the complexity of solving the aforementioned optimization problem grows with t
– at the end of each round-t we have to compute a new gradient ∇ft(w) which results in the computational
cost growing linearly in t. We would like to keep the computational cost per round-t to be small, ideally not
depending on t. So, we will take a different perspective to circumvent this issue. We will start by rewriting

2We don’t actually need this assumption. We are using it for simplicity in this class.

2

the regret as follows:

RT (π, {ft}Tt=1) =

T∑
t=1

ft(wt)−min
w∈Ω

T∑
t=1

ft(w)

= max
w∈Ω

(
T∑

t=1

[ft(wt)− ft(w)]

)

≤ max
w∈Ω

(
T∑

t=1

∇fT
t (wt)(wt − w)

)
(
∵ ft is convex ⇐⇒ ft(w) ≥ ft(wt) + (w − wt)

T∇ft(wt) ∀w ∈ Ω
)

=

T∑
t=1

wT
t ∇ft(wt)−min

w∈Ω

T∑
t=1

wT∇ft(wt)

= RT

π, {∇ft(wt)}Tt=1︸ ︷︷ ︸
abuse of notation

3

We will now apply FTRL on the linear losses f̃t(w)

∆
= wT∇ft(wt) with λ(w) = 1

2 ||w||
2
2 as shown below:

wt = argmin
w∈Ω

(
wT

(
t−1∑
s=1

∇fs(ws)

)
+

1

2η
||w||22

)

= argmin
w∈Ω
||w + η

t−1∑
s=1

∇fs(ws)||2 (by completing the squares)

Hence, wt will be the ℓ2-projection of −η
∑t−1

s=1∇fs(ws) to Ω, which can be implemented in O(1)-time4 at
each round-t as follows:

ut ←− ut−1 − η∇ft−1(wt−1)

wt ←− arg min
w∈Ω
||w − ut||2 (5)

Now, we can show that
RT (π, {ft}Tt=1) ≤ RT (π, {∇ft(wt)}Tt=1)

≤ B

η
+ ηTG2 (By Theorem 1.1)

∈ O(G
√
BT)

(
if η =

√
B

TG2

) (6)

where B = max
w∈Ω

λ(w)−min
w∈Ω

λ(w) and ||∇ft(wt)||2 ≤ G ∀t.

Remark 1.1. Some connections that we can make a note of:

• Suppose f = ft is a fixed function. This is similar to the standard Projected Gradient Descent (PGD)
step:

ut ←− wt−1 − η∇f(wt−1)

wt ←− arg min
w∈Ω
||w − ut||2

3We mean wT
t ∇ft(wt) here

4We are not considering how this scales with the dimensionality, d, of Ω ⊆ Rd at the moment

3

Using update rule in Equation 5 on a fixed function leads to the following bound for convex optimization
via Equation 6:

min
wt

f(wt)− f(w∗) ≤
1

T

(
T∑

t=1

f(wt)− f(w∗)

)
(∵ min ≤ avg.)

∈ O

(
G

√
B

T

)
Note that this need not necessarily be an optimal bound. We are simply showing an application of
Theorem 1.1 to a convex optimization problem.

• In machine learning, update rule defined in Equation 5 is similar to the Stochastic Gradient Descent
(SGD) update where ft is the loss for instance (xt, yt)

2 Contextual Bandits

We will resume our discussion on contextual bandits now. Recall that, in the case of K-armed bandits, we
had K-arms that can be pulled and we were competing against the single best arm/action in hindsight. How-
ever, in certain situations, the best arm/action depends on contextual information, which may be available
to the learner. For e.g., K-armed bandits: advertising; contextual bandits: targeted advertising.

Definition 1 (The contextual bandit problem). We will define the contextual bandit problem as follows:

(i.) The environment picks a context xt ∈ X and the learner observes xt.

(ii.) Learner chooses action At ∈ [K]. Simultaneously, the environment picks a loss vector ℓt ∈ [0, 1]k.

(iii.) Learner incurs the loss ℓt(At).

(iv.) Learner observes (only) ℓt(At).

Question: How do we define regret here?

■ One option is to compete against the best action for the given context:

RT (π,
¯
ℓ,
¯
x) = E

[
T∑

t=1

ℓt(At)

]
− min

e:X→[k]

T∑
t=1

ℓt(e(xt))

where E is w.r.t. the randomness of policy. Here, we are competing against the
single best mapping from contexts to actions.

▲ This is like running a separate bandit algorithm for different contexts.

▲ And this is challenging if |X | is large, but also unnecessary if there are relationships between
contexts. e.g., frying pan, non-stick skillet.

■ Instead, we will consider a set of N experts, who map contexts to actions and we will now be
competing against the single best expert in hindsight. Here, the experts could be, say, machine
learning models trained on a variety of large datasets.

▲ If the experts are {e1, ..., eN}, where ej : X → [K] ∀j ∈ [N], then

RT (π,
¯
ℓ,
¯
x) = E

[
T∑

t=1

ℓt(At)

]
− min

j∈[k]

T∑
t=1

ℓt(ej(xt)).

4

Question: Can we apply EXP3 algorithm here by treating the experts as arms?

■ Yes. But the regret is going to be large. RT ∈ O(
√
TN log(N)) which is fine as long as the

number of experts, N , is small. However, we are usually interested in cases where we have
many more experts than possible actions, N ≫ K. We wish to avoid poly(N) dependence, but
a poly log(N)-dependence would be fine.

3 The EXP4 algorithm

Just like we built on Hedge to arrive at the EXP3 algorithm, we are going to build on the EXP3 algorithm
to arrive at the EXP4 algorithm here. We will treat the experts as arms here and run EXP3 on them, but
what we will do differently here is the following: We will use the fact that when we observe feedback, we will
discount all the experts who would have chosen the action. Based on this, we can express the pseudocode
of EXP4 as shown below in Algorithm 1:

Algorithm 1: The EXP-4 algorithm

Input: Time horizon T , learning rate η
Let L̃0 ← 0N

for t = 1, ..., T do
Observe xt

Compute p̃t(i) =
e−ηL̃t−1(i)∑N

j=1 e−ηL̃t−1(j)
,∀i ∈ [N]

Let pt(a) =
∑N

j=1 p̃t(j)I(ej(xt) = a)
Sample At ∼ pt
Observe ℓt(At)

ℓ̂t(a)← ℓt(a)
pt(a)

I(At = a) ∀a ∈ [k]

ℓ̃t(j)← ℓ̂t(ej(xt)) ∀j ∈ [N]

L̃t(j)← L̃t−1(j) + ℓ̃t(j) ∀j ∈ [N]
end

Remark 3.1. We can note the following about the EXP4 algorithm:

• Lines (ii.), (iii.), and (iv.) can be implemented as Expert∼ p̃t and At = Expert(xt).

• We can write the loss update as

L̃t(j)←− L̃t−1(j) + I{ej(xt) = At} ·
ℓt(At)

pt(At)
(7)

▲ Note that we are not discounting only one expert here. That is, we are NOT utilizing the following
update rule:

L̃t(j)←− L̃t−1(j) + I{Et = j} · ℓt(At)

p̃t(Et)
(8)

See Remark 3.2 below for more on this.

Theorem 3.1 (Regret bound for EXP4). Assume that the loss vectors on each round satisfy ℓt ∈ [0, 1]K and
let xt ∈ X be drawn arbitrarily. Then, ∀

¯
ℓ (= (ℓ1, . . . , ℓT)), ∀

¯
x (= (x1, . . . , xT)), EXP4 satisfies:

RT (π,
¯
ℓ,
¯
x) ≤ logN

η
+ ηKT

5

where N is the number of experts. With η =
√

logN
KT , we see that the regret bound becomes

RT (π,
¯
ℓ,
¯
x) ≤ 2

√
KT logN

Proof First, we will compute E[ℓ̃t(j)|p̃t] and E[ℓ̃2t (j)|p̃t].

E[ℓ̃t(j)|p̃t] = (1− pt(ej(xt)))× 0 + pt(ej(xt)) ·
ℓt(ej(xt))

pt(ej(xt))

= ℓt(ej(xt))

(9)

Similarly,

E[ℓ̃2t (j)|p̃t] = (1− pt(ej(xt)))× 0 + pt(ej(xt)) ·
ℓ2t (ej(xt))

p2t (ej(xt))

=
ℓ2t (ej(xt))

pt(ej(xt))

(10)

We will now apply result (i.) from the Hedge Theorem (Theorem 1, Lecture 23). As we have N experts, the
loss ℓ̃t is non-negative and p̃Tt ℓ̃t ≤ 1 ∀t, we have, for any expert i:

T∑
t=1

p̃Tt ℓ̃t −
T∑

t=1

ℓ̃t(i) ≤
logN

η
+ η

T∑
t=1

p̃Tt ℓ̃
2
t (11)

We will apply Equation 11 by setting i = i∗ (i.e., best expert in hindsight),

i∗ = arg min
i∈[N]

T∑
t=1

ℓt(ej(xt))

From Equation 9, we get
E[ℓ̃t(i∗)] = ℓt(ei∗(xt))

From Equation 9 again, we get

E[p̃Tt ℓ̃t|p̃t] = p̃Tt E[ℓ̃t|p̃t]

=

N∑
j=1

p̃t(j)ℓt(ej(xt)) (By Equation 9)

=

N∑
j=1

p̃t(j)

(
K∑

a=1

ℓt(a)I{ej(xt) = a}

)

=

K∑
a=1

ℓt(a)

N∑
j=1

p̃t(j)I{ej(xt) = a}︸ ︷︷ ︸
pt(a)

=

K∑
a=1

pt(a)ℓt(a) = pTt ℓt

= E [ℓt(At)|pt]

6

Next, using Equation 10, we can say

E
[
p̃Tt ℓ̃

2
t

]
=

N∑
j=1

p̃t(j)
ℓ2t (ej(xt))

pt(ej(xt))
(By Equation 10)

=

N∑
j=1

p̃t(j) ·
K∑

a=1

ℓ2t (a)

pt(a)
I{ej(xt) = a}

=

K∑
a=1

ℓ2t (a)

pt(a)

N∑
j=1

p̃t(j)I{ej(xt) = a}︸ ︷︷ ︸
pt(a)

=

K∑
a=1

ℓ2t (a) ≤ K (∵ ℓt(a) ∈ [0, 1] ∀a ∈ [K], ∀t)

Remark 3.2. We discount all experts that predict a at round-t instead of just one expert. If we were
to discount only one expert, we would get a dependence on N as shown below which we clearly do not
want in case where we have large N :

N∑
j=1

p̃t(j)
ℓ2t (ej(xt))

p̃t(j)
≤ N

Intuitively, since pt(At) ≥ p̃t(Et), we see that the update rule in Equation 7 is better as it reduces
variance in observed loss values compared to the case where we use the update rule in Equation 8.

Thus, we can finally see that

E[LHS of Equation 11] = E

[
T∑

t=1

ℓt(At)

]
−

T∑
t=1

ℓt(ei∗(xt))

= RT (π,
¯
ℓ,
¯
x)

E[RHS of Equation 11] ≤ logN

η
+ ηKT

∈ O(
√
KT logN)

(
if η =

√
logN

KT

)

7

	Lecture 27 – Lectures 27, 28: Online Gradient Descent, Contextual Bandits
	FTRL and Online Gradient Descent
	Contextual Bandits
	The EXP4 algorithm

