
CS760 Machine Learning
Neural Networks IV

Kirthi Kandasamy
University of Wisconsin-Madison

March 6, 2023 1

Announcements

• Midterm

• Alternative date on 3/21. You should have received an email from me.

• Please do not share answers after you finish your midterm.

• Midterm course evaluations

�2

Outline

• Convolutional operations

• 2D convolution

• Padding, stride etc

• Multiple input and output channels

• Pooling

• Convolutional Neural Networks & CNN Architectures

�3

Outline

• Convolutional operations

• 2D convolution

• Padding, stride etc

• Multiple input and output channels

• Pooling

• Convolutional Neural Networks & CNN Architectures

�4

Multi-layer perceptrons
f1 f2 h1 = σ(W1x + b1)

h2 = σ(W2h1 + b2)
h3 = σ(W3h2 + b3)

f = W4h3 + b4
y = softmax(f)

NNs are composition
of nonlinear

functions
!5

How to classify
Cats vs. dogs?

36M floats in a RGB image!

Classifying Images

�6

Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output

Hidden layer
Input

100 neurons

Classifying Images with fully connected NNs

�7

Convolutions come to rescue!

�8

!9

• Reduces number 
of parameters

• Translation
Invariance

• Locality

Why Convolution?

!10

2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

!11

2-D Convolution Layer

• input matrix
• kernel matrix
• b: scalar bias
• output matrix  
 

• W and b are learnable parameters

Y = X ⋆ W + b

X : nh × nw

W : kh × kw

Y : (nh − kh + 1) × (nw − kw + 1)

!12

Examples
Edge Detection

Sharpen

Gaussian Blur

(wikipedia)

!13

Convolutional Neural Networks

Convolutional networks: neural networks that use convolution in
place of general matrix multiplication in at least one of their
layers

!14

Padding

• Given a 32 x 32 input image
• Apply convolution with 5 x 5 kernel

• 28 x 28 output with 1 layer
• 4 x 4 output with 7 layers

• Shape decreases faster with larger kernels  

• Padding preserves edge information!

!15

Padding

Padding adds rows/columns around input

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0
!16

Padding

• Padding rows and columns, output shape will be

• A common choice is and
• Odd : pad on both sides
• Even : pad on top, on bottom

(nh − kh + ph + 1) × (nw − kw + pw + 1)

ph pw

ph = kh − 1 pw = kw − 1
kh ph/2
kh ⌈ph/2⌉ ⌊ph/2⌋

!17

Stride

• Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8
0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6

!18

Stride

• Given stride for the height and stride for the width,  
the output shape is

• With and

• If input height/width are divisible by strides

sh sw

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

ph = kh − 1 pw = kw − 1

⌊(nh + sh − 1)/sh⌋ × ⌊(nw + sw − 1)/sw⌋

(nh/sh) × (nw/sw)
!19

Q1.	Suppose	we	want	to	perform	convolution	on	a	single	channel	image	
of	size	7x7	(no	padding)	with	a	kernel	of	size	3x3,	and	stride	=	2.	What	is	
the	dimension	of	the	output?		

A.3x3

B.7x7

C.5x5

D.2x2

7

7

�20

Q1.	Suppose	we	want	to	perform	convolution	on	a	single	channel	image	
of	size	7x7	(no	padding)	with	a	kernel	of	size	3x3,	and	stride	=	2.	What	is	
the	dimension	of	the	output?		

A.3x3

B.7x7

C.5x5

D.2x2

7

7

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

�21

Multiple Input and
Output Channels

!22

Multiple Input Channels

• Color image may have three RGB channels

!23

Multiple Input Channels

• Color image may have three RGB channels

!24

Multiple Input Channels

• Have a kernel for each channel, and then sum results
over channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

!25

Multiple Input Channels

• input
• kernel
• output

X : ci × nh × nw

W : ci × kh × kw

Y : mh × mw

Y = X ⋆ W =
ci

∑
i=0

Xi,:,: ⋆ Wi,:,: + b

!26

Multiple Input Channels
• RGB images have 3 channels

*
!27

Multiple Input Channels
• RGB images have 3 channels

*
!28

Multiple Input Channels
• RGB images have 3 channels

*
!29

Multiple Output Channels

• We can have multiple 3-D kernels, each one generates
an output channel

• Input
• Kernel
• Output

X : ci × nh × nw

W : co × ci × kh × kw

Y : co × mh × mw

Yi,:,: = X ⋆ Wi,:,:,: + b
for i = 1,…, co

!30

Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern

(Gabor filters)

!31

Q.	Suppose	we	want	to	perform	convolution	on	a	RGB	image	of	size	224x224	(no	padding)		
with	64	kernels	of	size	3x3.	Stride	=	1.	What	is	a	reasonable	estimate	of	the	total	number	of	scalar	
multiplications	involved	in	this	operation	(without	considering	any	optimization	in	matrix	multiplication)?		

A. 64x3x3x222x222

B. 64x3x3x222

C. 3x3x222x222

D. 64x3x3x3x222x222

�32

Q3.	Suppose	we	want	to	perform	convolution	on	a	RGB	image	of	size	224x224	(no	padding)		
with	64	kernels	of	size	3x3.	Stride	=	1.	What	is	a	reasonable	estimate	of	the	total	number	of	scalar	
multiplications	involved	in	this	operation	(without	considering	any	optimization	in	matrix	multiplication)?		

A. 64x3x3x222x222

B. 64x3x3x222

C. 3x3x222x222

D. 64x3x3x3x222x222

�33

A. 64x222x222	

B. 64x3x3x222	

C. 3x3x3x64	

D. (3x3x3+1)x64

Q.	Suppose	we	want	to	perform	convolution	on	a	RGB	image	of	size	224x224	(no	padding)		
with	64	kernels	of	size	3x3.	Stride	=	1.	Which	is	a	reasonable	estimate	of	the	total	number	
of	learnable	parameters?

�34

A. 64x222x222	

B. 64x3x3x222	

C. 3x3x3x64	

D. (3x3x3+1)x64

Q.	Suppose	we	want	to	perform	convolution	on	a	RGB	image	of	size	224x224	(no	padding)		
with	64	kernels	of	size	3x3.	Stride	=	1.	Which	is	a	reasonable	estimate	of	the	total	number	
of	learnable	parameters?

�35

courses.d2l.ai/berkeley-stat-157

Pooling Layer

!36

Pooling

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato
!37

Pooling

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato
!38

2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

!39

Average Pooling

• Max pooling: the strongest pattern signal in a window
• Average pooling: replace max with mean in max pooling

• The average signal strength in a window

Max pooling Average pooling

!40

Padding, Stride, and Multiple Channels

• Pooling layers have similar padding
and stride as convolutional layers

• No learnable parameters
• Apply pooling for each input channel to

obtain the corresponding output
channel 
 
#output channels = #input channels

!41

Q.	Suppose	we	want	to	perform	2x2	average	pooling	on	the	following	
single	channel	feature	map	of	size	4x4	(no	padding),	and	stride	=	2.	
What	is	the	output?		

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5 �42

Q.	Suppose	we	want	to	perform	2x2	average	pooling	on	the	following	
single	channel	feature	map	of	size	4x4	(no	padding),	and	stride	=	2.	
What	is	the	output?		

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5 �43

Q.	What	is	the	output	if	we	replace	average	pooling	with	2	x	2	max	
pooling	(other	settings	are	the	same)?

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5 �44

Q.	What	is	the	output	if	we	replace	average	pooling	with	2	x	2	max	
pooling	(other	settings	are	the	same)?

A.

B.

C.

D.

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5 �45

Outline

• Convolutional operations

• 2D convolution

• Padding, stride etc

• Multiple input and output channels

• Pooling

• Convolutional Neural Networks & CNN Architectures

�46

Convolutional Neural Networks

Convolutional networks: neural networks that use convolution in
place of general matrix multiplication in at least one of their
layers

!47

• Translation
Invariance

• Locality
• Reduces number 

of parameters

Why CNNs instead of MLPs?

!48

Why CNNs instead of MLPs?

Fully connected layer, !×#	edges

!	output nodes

#	input nodes

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Sparse interactions!

!49

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Why CNNs instead of MLPs?

Sparse interactions!

!50

Evolution of neural net architectures

LeNet AlexNet

Inception
Net

ResNet
DenseNet

�51

gluon-cv.mxnet.io

LeNet Architecture

!52

Handwritten Digit
Recognition

!53

MNIST
• Centered and scaled
• 50,000 training data
• 10,000 test data
• 28 x 28 images
• 10 classes

!54

Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

!55

AlexNet

!56

Deng et al. 2009�57

AlexNet

• AlexNet won ImageNet competition in 2012
• Deeper and bigger LeNet
• Paradigm shift for computer vision

!58

AlexNet Architecture

LeNetAlexNet

Larger kernel size, stride
because of the increased

image size, and more
output channels.

Larger pool size

!59

AlexNet Architecture

LeNet

AlexNet

More output channels.

3 additional 
convolutional layers

!60

AlexNet Architecture

LeNetAlexNet

Increase hidden size  
from 120 to 4096

1000 classes output

!61

More Differences…

• Change activation function from sigmoid to ReLu 
(no more vanishing gradient)

Saturating gradients

!62

• Change activation function from sigmoid to ReLu 
(no more vanishing gradient)

• Data augmentation

More Differences…

!63

Complexity

#parameters
AlexNet LeNet

Conv1 35K 150
Conv2 614K 2.4K

Conv3-5 3M
Dense1 26M 0.048M
Dense2 16M 0.01M

Total 46M 0.06M

!X

Complexity

#parameters
AlexNet LeNet

Conv1 35K 150
Conv2 614K 2.4K

Conv3-5 3M
Dense1 26M 0.048M
Dense2 16M 0.01M

Total 46M 0.06M

11x11x3x96=35k

!X

�X

AlexNet
Each Conv1 kernel is 3x11x11, can be visualized as an

RGB patch:

[Visualizing and Understanding Convolutional Networks. M Zeiler & R Fergus 2013]

VGG

!64

VGG

• AlexNet is deeper and bigger
than LeNet to get
performance

• Go even bigger & deeper?
• Options

• More dense layers  
(too expensive)

• More convolutions
• Group into blocks

!X

VGG Blocks

• Deeper vs. wider?
• 5x5 convolutions
• 3x3 convolutions (more)
• Deep & narrow better

• VGG block
• 3x3 convolutions (pad 1) 

(n layers, m channels)
• 2x2 max-pooling  

(stride 2)

Part of AlexNetVGG block

!X

VGG Architecture

• Multiple VGG blocks
followed by dense
layers

• Vary the repeating
number to get different
architectures, such as
VGG-16, VGG-19, …

AlexNet

VGG AlexNet

!X

Can	we	keep	adding	more	layers?

• No!	Some	problems:	
– Vanishing	gradients:	more	layers	➔ more	likely	
– Deeper	models	are	harder	to	optimize	

Reflected	in	training	error:

He	et	al:	“Deep	Residual	Learning	for	Image	Recognition” �65

Why	would	more	layers	result	in	worse	performance?	

Idea:	if	layers	can	learn	identity,	can’t	get	worse

Depth	Issues	&	Learning	Identity

• Same	architecture,	etc.	
• If	the	A	can	learn	f,	then	so	

can	B,	as	long	as	top	layers	
learn	identity

Network	A

Network	B

Q:	can	we	
learn	identity	
here?

�66

Idea:	Identity	might	be	hard	to	learn,	but	zero	is	easy!	
• Make	all	the	weights	tiny,	produces	zero	for	output	
• Can	easily	transform	learning	identity	to	learning	zero:

x

f(x)

Residual	Connections

f(x)

x

+f(x)	+	x

Left:	Conventional	layers	block	

Right:	Residual	layer	block	

To	learn	identity	f(x)	=	x,	layers	now	
need	to	learn	f(x)	=	0	➔ easier	

�67

�68

ResNet	Architecture

Idea:	Residual	(skip)	connections	help	make	learning	easier	
• Example	architecture:	
• Note:	residual	connections		

– Every	two	layers	for	ResNet34	
• Significantly	better	performance	

– No	additional	parameters!	
– Records	on	many	benchmarks

He	et	al:	“Deep	Residual	Learning	for	Image	Recognition”�69

�X

�X

�X

�X

�70

A	Bit	More	on	ResNets

Idea:	Residual	(skip)	connections	help	make	learning	easier	
• Note:	Can	also	analyze	from	backpropagation	p.o.v	

– Residual	connections	add	paths	to	computation	graph	
• Also	uses	batch	normalization	

– Normalize	the	features	at	each	layer	to	have	same	mean/variance	
– Common	deep	learning	trick	

• Highway	networks:	learn	weights	for	residual	connections

Ioffe	and	Szegedy:	“Batch	Normalization:	Accelerating	Deep	Network	
Training	b	y	Reducing	Internal	Covariate	Shift”

�71

Evolution	of	CNNs

ImageNet	competition	(error	rate)

Credit:	Stanford	CS	231n
�72

Acknowledgement:
Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:
https://courses.d2l.ai/berkeley-stat-157/index.html

 73

https://courses.d2l.ai/berkeley-stat-157/index.html

