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Announcements

• Midterm 

• Alternative date on 3/21. You should have received an email from me.


• Please do not share answers after you finish your midterm.


• Midterm course evaluations
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Outline

• Convolutional operations  

• 2D convolution


• Padding, stride etc


• Multiple input and output channels


• Pooling


• Convolutional Neural Networks & CNN Architectures
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Multi-layer perceptrons
f1 f2 h1 = σ(W1x + b1)

h2 = σ(W2h1 + b2)
h3 = σ(W3h2 + b3)

f = W4h3 + b4
y = softmax(f)

NNs are composition 
of nonlinear 

functions
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How to classify 
Cats vs. dogs?

36M floats in a RGB image!

Classifying Images
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Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output 

Hidden layer 
Input 

100 neurons

Classifying Images with fully connected NNs
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Convolutions come to rescue!
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• Reduces number 
of parameters 

• Translation 
Invariance 

• Locality

Why Convolution?
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2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.
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2-D Convolution Layer

•                   input matrix 
•                   kernel matrix 
• b: scalar bias 
•                                                  output matrix  
 

• W and b are learnable parameters 

Y = X ⋆ W + b

X : nh × nw

W : kh × kw

Y : (nh − kh + 1) × (nw − kw + 1)
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Examples
Edge Detection

Sharpen

Gaussian Blur

(wikipedia)
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Convolutional Neural Networks

Convolutional networks: neural networks that use convolution in 
place of general matrix multiplication in at least one of their 
layers
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Padding

• Given a 32 x 32 input image 
• Apply convolution with 5 x 5 kernel  

• 28 x 28 output with 1 layer 
• 4 x 4 output with 7 layers  

• Shape decreases faster with larger kernels   

• Padding preserves edge information!
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Padding

Padding adds rows/columns around input

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0
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Padding

• Padding      rows and      columns, output shape will be 

• A common choice is                   and 
• Odd     : pad         on both sides 
• Even     : pad           on top,           on bottom

(nh − kh + ph + 1) × (nw − kw + pw + 1)

ph pw

ph = kh − 1 pw = kw − 1
kh ph/2
kh ⌈ph/2⌉ ⌊ph/2⌋
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Stride

• Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8
0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6
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Stride

• Given stride     for the height and stride     for the width,  
the output shape is  

• With                   and 

• If input height/width are divisible by strides

sh sw

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

ph = kh − 1 pw = kw − 1

⌊(nh + sh − 1)/sh⌋ × ⌊(nw + sw − 1)/sw⌋

(nh/sh) × (nw/sw)
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Q1.	Suppose	we	want	to	perform	convolution	on	a	single	channel	image	
of	size	7x7	(no	padding)	with	a	kernel	of	size	3x3,	and	stride	=	2.	What	is	
the	dimension	of	the	output?		

A.3x3 

B.7x7 

C.5x5 

D.2x2

7

7
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Q1.	Suppose	we	want	to	perform	convolution	on	a	single	channel	image	
of	size	7x7	(no	padding)	with	a	kernel	of	size	3x3,	and	stride	=	2.	What	is	
the	dimension	of	the	output?		

A.3x3 

B.7x7 

C.5x5 

D.2x2

7

7

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋
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Multiple Input and 
Output Channels
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Multiple Input Channels

• Color image may have three RGB channels
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Multiple Input Channels

• Color image may have three RGB channels
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Multiple Input Channels

• Have a kernel for each channel, and then sum results 
over channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56
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Multiple Input Channels

•                         input 
•                         kernel 
•                     output

X : ci × nh × nw

W : ci × kh × kw

Y : mh × mw

Y = X ⋆ W =
ci

∑
i=0

Xi,:,: ⋆ Wi,:,: + b
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Multiple Input Channels
• RGB images have 3 channels

*
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Multiple Input Channels
• RGB images have 3 channels

*
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Multiple Input Channels
• RGB images have 3 channels

*
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Multiple Output Channels

• We can have multiple 3-D kernels, each one generates 
an output channel 

• Input 
• Kernel 
• Output 

X : ci × nh × nw

W : co × ci × kh × kw

Y : co × mh × mw

Yi,:,: = X ⋆ Wi,:,:,: + b
for i = 1,…, co
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Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern

(Gabor filters)
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Q.	Suppose	we	want	to	perform	convolution	on	a	RGB	image	of	size	224x224	(no	padding)		
with	64	kernels	of	size	3x3.	Stride	=	1.	What	is	a	reasonable	estimate	of	the	total	number	of	scalar	
multiplications	involved	in	this	operation	(without	considering	any	optimization	in	matrix	multiplication)?		

A. 64x3x3x222x222 

B. 64x3x3x222 

C. 3x3x222x222 

D. 64x3x3x3x222x222
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Q3.	Suppose	we	want	to	perform	convolution	on	a	RGB	image	of	size	224x224	(no	padding)		
with	64	kernels	of	size	3x3.	Stride	=	1.	What	is	a	reasonable	estimate	of	the	total	number	of	scalar	
multiplications	involved	in	this	operation	(without	considering	any	optimization	in	matrix	multiplication)?		

A. 64x3x3x222x222 

B. 64x3x3x222 

C. 3x3x222x222 

D. 64x3x3x3x222x222
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A. 64x222x222	

B. 64x3x3x222	

C. 3x3x3x64	

D. (3x3x3+1)x64

Q.	Suppose	we	want	to	perform	convolution	on	a	RGB	image	of	size	224x224	(no	padding)		
with	64	kernels	of	size	3x3.	Stride	=	1.	Which	is	a	reasonable	estimate	of	the	total	number	
of	learnable	parameters?
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A. 64x222x222	

B. 64x3x3x222	

C. 3x3x3x64	

D. (3x3x3+1)x64

Q.	Suppose	we	want	to	perform	convolution	on	a	RGB	image	of	size	224x224	(no	padding)		
with	64	kernels	of	size	3x3.	Stride	=	1.	Which	is	a	reasonable	estimate	of	the	total	number	
of	learnable	parameters?
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courses.d2l.ai/berkeley-stat-157

Pooling Layer
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Pooling 

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato
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Pooling 

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato
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2-D Max Pooling

• Returns the maximal value in the 
sliding window

max(0,1,3,4) = 4
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Average Pooling

• Max pooling: the strongest pattern signal in a window 
• Average pooling: replace max with mean in max pooling 

• The average signal strength in a window

Max pooling Average pooling
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Padding, Stride, and Multiple Channels

• Pooling layers have similar padding 
and stride as convolutional layers 

• No learnable parameters 
• Apply pooling for each input channel to 

obtain the corresponding output 
channel 
 
#output channels = #input channels
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Q.	Suppose	we	want	to	perform	2x2	average	pooling	on	the	following	
single	channel	feature	map	of	size	4x4	(no	padding),	and	stride	=	2.	
What	is	the	output?		

A. 

B. 

C. 

D. 

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5 �42
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Q.	What	is	the	output	if	we	replace	average	pooling	with	2	x	2	max	
pooling	(other	settings	are	the	same)?

A. 

B. 

C. 

D. 

12 20 30 0

20 12 2 0

0 70 5 2

8 2 90 3

20 30

70 90

16 8

20 25

20 30

20 25

12 2

70 5 �44
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Outline

• Convolutional operations  

• 2D convolution


• Padding, stride etc


• Multiple input and output channels


• Pooling


• Convolutional Neural Networks & CNN Architectures
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Convolutional Neural Networks

Convolutional networks: neural networks that use convolution in 
place of general matrix multiplication in at least one of their 
layers
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• Translation 
Invariance 

• Locality 
• Reduces number 

of parameters

Why CNNs instead of MLPs?
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Why CNNs instead of MLPs?

Fully connected layer, !×#	edges

!	output nodes

#	input nodes

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Sparse interactions!
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Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Why CNNs instead of MLPs?

Sparse interactions!
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Evolution of neural net architectures

LeNet AlexNet

Inception 
Net

ResNet
DenseNet
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gluon-cv.mxnet.io

LeNet Architecture
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Handwritten Digit  
Recognition
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MNIST
• Centered and scaled  
• 50,000 training data 
• 10,000 test data 
• 28 x 28 images 
• 10 classes
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Y. LeCun, L. 
Bottou, Y. Bengio, 
P. Haffner, 1998 
Gradient-based 
learning applied to 
document 
recognition
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AlexNet
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Deng et al. 2009�57



AlexNet

• AlexNet won ImageNet competition in 2012 
• Deeper and bigger LeNet  
• Paradigm shift for computer vision
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AlexNet Architecture 

LeNetAlexNet

Larger kernel size, stride 
because of the increased 

image size, and more 
output channels.

Larger pool size
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AlexNet Architecture 

LeNet

AlexNet

More output channels.

3 additional 
convolutional  layers
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AlexNet Architecture 

LeNetAlexNet

Increase hidden size  
from 120 to 4096

1000 classes output
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More Differences…

• Change activation function from sigmoid to ReLu 
(no more vanishing gradient)

Saturating gradients
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• Change activation function from sigmoid to ReLu 
(no more vanishing gradient) 

• Data augmentation

More Differences…
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Complexity

#parameters 
AlexNet LeNet

Conv1 35K 150
Conv2 614K 2.4K

Conv3-5 3M
Dense1 26M 0.048M
Dense2 16M 0.01M

Total 46M 0.06M
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Complexity

#parameters 
AlexNet LeNet

Conv1 35K 150
Conv2 614K 2.4K

Conv3-5 3M
Dense1 26M 0.048M
Dense2 16M 0.01M

Total 46M 0.06M

11x11x3x96=35k
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AlexNet
Each Conv1 kernel is 3x11x11, can be visualized as an


RGB patch: 

[Visualizing and Understanding Convolutional Networks.  M Zeiler & R Fergus 2013]




VGG
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VGG

• AlexNet is deeper and bigger 
than LeNet to get 
performance 

• Go even bigger & deeper? 
• Options 

• More dense layers  
(too expensive) 

• More convolutions 
• Group into blocks
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VGG Blocks 

• Deeper vs. wider? 
• 5x5 convolutions 
• 3x3 convolutions (more) 
• Deep & narrow better 

• VGG block 
• 3x3 convolutions (pad 1) 

(n layers, m channels) 
• 2x2 max-pooling  

(stride 2)

Part of AlexNetVGG block
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VGG Architecture 

• Multiple VGG blocks 
followed by dense 
layers 

• Vary the repeating 
number to get different 
architectures, such as 
VGG-16, VGG-19, …

AlexNet

VGG AlexNet
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Can	we	keep	adding	more	layers?

• No!	Some	problems:	
– Vanishing	gradients:	more	layers	➔ more	likely	
– Deeper	models	are	harder	to	optimize	

Reflected	in	training	error:

He	et	al:	“Deep	Residual	Learning	for	Image	Recognition” �65



Why	would	more	layers	result	in	worse	performance?	

Idea:	if	layers	can	learn	identity,	can’t	get	worse

Depth	Issues	&	Learning	Identity

• Same	architecture,	etc.	
• If	the	A	can	learn	f,	then	so	

can	B,	as	long	as	top	layers	
learn	identity

Network	A

Network	B

Q:	can	we	
learn	identity	
here?
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Idea:	Identity	might	be	hard	to	learn,	but	zero	is	easy!	
• Make	all	the	weights	tiny,	produces	zero	for	output	
• Can	easily	transform	learning	identity	to	learning	zero:

x

f(x)

Residual	Connections

f(x)

x

+f(x)	+	x

Left:	Conventional	layers	block	

Right:	Residual	layer	block	

To	learn	identity	f(x)	=	x,	layers	now	
need	to	learn	f(x)	=	0	➔ easier	
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ResNet	Architecture

Idea:	Residual	(skip)	connections	help	make	learning	easier	
• Example	architecture:	
• Note:	residual	connections		

– Every	two	layers	for	ResNet34	
• Significantly	better	performance	

– No	additional	parameters!	
– Records	on	many	benchmarks

He	et	al:	“Deep	Residual	Learning	for	Image	Recognition”�69
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A	Bit	More	on	ResNets

Idea:	Residual	(skip)	connections	help	make	learning	easier	
• Note:	Can	also	analyze	from	backpropagation	p.o.v	

– Residual	connections	add	paths	to	computation	graph	
• Also	uses	batch	normalization	

– Normalize	the	features	at	each	layer	to	have	same	mean/variance	
– Common	deep	learning	trick	

• Highway	networks:	learn	weights	for	residual	connections

Ioffe	and	Szegedy:	“Batch	Normalization:	Accelerating	Deep	Network	
Training	b	y	Reducing	Internal	Covariate	Shift”
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Evolution	of	CNNs

ImageNet	competition	(error	rate)

Credit:	Stanford	CS	231n
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