

CS760 Machine Learning Neural Networks IV Kirthi Kandasamy University of Wisconsin-Madison

March 6, 2023

Announcements

- Midterm

 - Please do not share answers after you finish your midterm.

Midterm course evaluations \bullet

Alternative date on 3/21. You should have received an email from me.

Outline

- Convolutional operations
 - 2D convolution
 - Padding, stride etc
 - Multiple input and output channels
 - Pooling
- Convolutional Neural Networks & CNN Architectures

Outline

- Convolutional operations
 - 2D convolution
 - Padding, stride etc
 - Multiple input and output channels
 - Pooling
- Convolutional Neural Networks & CNN Architectures

Multi-layer perceptrons

 $\begin{aligned} \mathbf{h}_1 &= \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) \\ \mathbf{h}_2 &= \sigma(\mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2) \\ \mathbf{h}_3 &= \sigma(\mathbf{W}_3 \mathbf{h}_2 + \mathbf{b}_3) \\ \mathbf{f} &= \mathbf{W}_4 \mathbf{h}_3 + \mathbf{b}_4 \\ \mathbf{y} &= \mathrm{softmax}(\mathbf{f}) \end{aligned}$

NNs are composition of nonlinear functions

Classifying Images

How to classify Cats vs. dogs?

Dual **1200** wide-angle and

telephoto cameras

36M floats in a RGB image!

Classifying Images with fully connected NNs

Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Convolutions come to rescue!

Why Convolution?

- Reduces number of parameters
- Translation
 Invariance
- Locality

2-D Convolution

 $0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19$, $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25$, $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37$, $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

(vdumoulin@ Github)

2-D Convolution Layer

• $\mathbf{X}: n_h \times n_w$ input matrix

- W: $k_h \times k_w$ kernel matrix
- b: scalar bias
- **Y** : $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix

• W and b are learnable parameters

$\mathbf{Y} = \mathbf{X} \star \mathbf{W} + b$

Examples

 $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

 $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

(wikipedia)

Edge Detection

Sharpen

Convolutional Neural Networks

Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

Padding

- Given a 32 x 32 input image
- Apply convolution with 5 x 5 kernel
 - 28 x 28 output with 1 layer
 - 4 x 4 output with 7 layers
- Shape decreases faster with larger kernels
- Padding preserves edge information!

Padding

Padding adds rows/columns around input

Input

Kernel

 $0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0$

Output

0	3	8	4
9	19	25	10
21	37	43	16
6	7	8	0

Padding

- Padding p_h rows and p_w columns, output shape will be $(n_h - k_h + p_h + 1)$
- A common choice is $p_h = k_h 1$ and $p_w = k_w 1$
 - Odd k_h : pad $p_h/2$ on both sides
 - Even k_h : pad $[p_h/2]$ on top, $|p_h/2|$ on bottom

$$\times (n_w - k_w + p_w + 1)$$

Stride

Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

Input

Kernel

 $0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$ $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$

Stride

• Given stride s_h for the height and stride s_w for the width, the output shape is

$$\left\lfloor (n_h - k_h + p_h + s_h)/s_h \right\rfloor \times \left\lfloor (n_w - k_w + p_w + s_w)/s_w \right\rfloor$$

- With $p_h = k_h 1$ and $p_w = k_h$ $|(n_h + s_h - 1)/s_h|$
- If input height/width are divisible by strides

 (n_h/s_h)

$$k_{w} - 1$$

$$\times \left\lfloor (n_w + s_w - 1)/s_w \right\rfloor$$

$$\times (n_w/s_w)$$

Q1. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3 **B.7x7** C.5x5 D.2x2

7

Q1. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3 **B.7x7** C.5x5 D.2x2

 $\left\lfloor (n_h - k_h + p_h + s_h)/s_h \right\rfloor \times \left\lfloor (n_h - k_h + p_h + s_h)/s_h \right\rfloor$

$$n_w - k_w + p_w + s_w)/s_w$$

Multiple Input and Output Channels

Color image may have three RGB channels

Color image may have three RGB channels

Have a kernel for each channel, and then sum results over channels

Input

*

)

- **X** : $c_i \times n_h \times n_w$ input
- W: $c_i \times k_h \times k_w$ kernel
- $\mathbf{Y}: m_h \times m_w$ output

Multiple Input Channels RGB images have 3 channels

Multiple Input Channels RGB images have 3 channels

Multiple Input Channels RGB images have 3 channels

Multiple Output Channels

- an output channel
- Input
- Kernel X: $c_i \times n_h \times n_w$
- Output W : $c_o \times c_i \times k_h \times k_w$
 - **Y**: $c_0 \times m_h \times m_w$

• We can have multiple 3-D kernels, each one generates

 $\mathbf{Y}_{i\ldots} = \mathbf{X} \star \mathbf{W}_{i\ldots} + b$ for $i = 1, ..., c_0$

Multiple Input/Output Channels

Each 3-D kernel may recognize a particular pattern

(Gabor filters)

Q. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 kernels of size 3x3. Stride = 1. What is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A. 64x3x3x222x222

- B. 64x3x3x222
- C. 3x3x222x222
- D. 64x3x3x3x222x222

Q3. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 kernels of size 3x3. Stride = 1. What is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A. 64x3x3x222x222B. 64x3x3x222 C. 3x3x222x222

D. 64x3x3x3x222x222

Q. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 kernels of size 3x3. Stride = 1. Which is a reasonable estimate of the total number of learnable parameters?

- A. 64x222x222
- B. 64x3x3x222
- C. 3x3x3x64
- D. (3x3x3+1)x64

Q. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 kernels of size 3x3. Stride = 1. Which is a reasonable estimate of the total number of learnable parameters?

A. 64x222x222

B. 64x3x3x222

C. 3x3x3x64

D. (3x3x3+1)x64

Pooling Layer

Pooling

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?

37 Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

Pooling

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

38 Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

2-D Max Pooling

 Returns the maximal value in the sliding window

Input

	4
	7

max(0,1,3,4) = 4

Output

Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
 - The average signal strength in a window

Max pooling

pattern signal in a window ax with mean in max pooling gth in a window

Average pooling

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

#output channels = #input channels

Q. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?

•	20	30
	20	25

12	2
70	5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?

70

5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?

20	30
20	25

12 |2|5 70

D.

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?

Β.

D

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Outline

- Convolutional operations
 - 2D convolution
 - Padding, stride etc
 - Multiple input and output channels
 - Pooling
- Convolutional Neural Networks & CNN Architectures

Convolutional Neural Networks

Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

Why CNNs instead of MLPs?

- Translation Invariance
- Locality
- Reduces number of parameters

Why CNNs instead of MLPs?

Sparse interactions! Fully connected layer, *m*×*n* edges

Figure from *Deep Learning*, by Goodfellow, Bengio, and Courville

Why CNNs instead of MLPs?

Sparse interactions!

Convolutional layer, $\leq m \times k$ edges

Figure from *Deep Lear fing*, by Goodfellow, Bengio, and Courville

Evolution of neural net architectures

LeNet Architecture

gluon-cv.mxnet.io

Handwritten Digit Recognition

Philip Marlow PORTLAND OR 970 638 Hollywood Blia # 615 Los Angeles, CA 15479 2019 EM3 L Dave Fennile vletter, in 509 lasiade Ave, Suite H Hood River, OR 97031 alleligen and and and and any first of a star for a star and the star of the s 9703i206080 CARROLL O'CONNOR **BUSINESS ACCOUNT** % NANAS, STERN, BIERS AND CO. march 10 19 9454 WILSHIRE BLVD., STE. 405 273-2501 BEVERLY HILLS, CALIF. 90212 PAY TO THE WILSHIRE-DOHENY OFFICE WELLS FARGO BANK 9101 WILSHIRE BOULEVARD BEVERLY HILLS, CALIFORNIA 90211 06353 ,000050000. 18 THE REPORT OF THE PARTY OF THE DELUTE CHECK PRINTERS - 1H

MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28 x 28 images
- 10 classes

0000000000000 1 222222222222 3333333333 66666666666 777777777 8888888888888 99999999999999999

Ô

0 103

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998 Gradient-based learning applied to document recognition

55

AlexNet

Deng et al. 2009

AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

AlexNet Architecture

Larger kernel size, stride because of the increased image size, and more output channels.

AlexNet Architecture

AlexNet Architecture

1000 classes output

Increase hidden size from 120 to 4096

More Differences...

 Change activation function from sigmoid to ReLu (no more vanishing gradient)

More Differences...

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation

Complexity

	#parameters	
	AlexNet	LeNet
Conv1	35K	150
Conv2	614K	2.4K
Conv3-5	3M	
Dense1	26M	0.048N
Dense2	16M	0.01M
Total	46M	0.06M

Х

Complexity

	#parameters	
	AlexNet	LeNet
Conv1	35K	150
Conv2	614K	2.4K
Conv3-5	3M	
Dense1	26M	0.048N
Dense2	16M	0.01M
Total	46M	0.06M

11x11x3x96=35k

[Visualizing and Understanding Convolutional Networks. M Zeiler & R Fergus 2013]

Each Conv1 kernel is 3x11x11, can be visualized as an

VGG

- softmax

VGG

- AlexNet is deeper and bigger than LeNet to get performance
- Go even bigger & deeper?
- Options
 - More dense layers (too expensive)
 - More convolutions
 - Group into blocks

VGG Blocks

- Deeper vs. wider?
 - 5x5 convolutions
 - 3x3 convolutions (more)
 - Deep & narrow better
- VGG block
 - 3x3 convolutions (pad 1) (n layers, m channels)
 - 2x2 max-pooling (stride 2)

Part of AlexNet VGG block 3x3 MaxPool, stride 2 3x3 MaxPool, stride 2 3x3 Conv (384), pad 1 3x3 Conv, pad 1 3x3 Conv (384), pad 1 ... 3x3 Conv (384), pad 1 3x3 Conv, pad 1

VGG Architecture

- Multiple VGG blocks followed by dense layers
- Vary the repeating number to get different architectures, such as VGG-16, VGG-19, ...

VGG

AlexNet

Can we keep adding more layers?

- No! Some problems:
 - − Vanishing gradients: more layers → more likely
 - Deeper models are harder to optimize

He et al: "Deep Residual Learning for Image Recognition"

Depth Issues & Learning Identity

- Same architecture, etc.
- If the A can learn *f*, then so can B, as long as top layers learn identity

Idea: if layers can learn identity, can't get worse

Why would more layers result in worse performance?

Q: can we learn identity here?

Residual Connections

- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Idea: Identity might be hard to learn, but zero is easy!

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now need to learn $f(x) = 0 \rightarrow$ easier

Full ResNet Architecture [He et al. 2015]

- Stack residual blocks
- Every residual block has two 3x3 [conv layers
- Periodically, double # of filters and downsample spatially using stride of 2 (/2 in each dimension)

ResNet Architecture

Idea: Residual (skip) connections help make learning easier

- Example architecture:
- Note: residual connections
 - Every two layers for ResNet34
- Significantly better performance
 - No additional parameters!
 - Records on many benchmarks

He et al: "Deep Residual Learning for Image Recognition"69

ResNet Architecture Various depth

layer name	output size	18-layer 34-layer		50-layer	101-layer	152-layer			
conv1	112×112	7×7, 64, stride 2							
		3×3 max pool, stride 2							
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10^{9}			

ResNet Architecture Various depth

layer name	output size	18-layer 34-layer		50-layer	101-layer	152-layer		
conv1	112×112			7×7, 64, stride 2	2			
		3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 2$	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	1 4×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	average pool, 1000-d fc, softmax						
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^{9}		

ResNet Architecture Various de

pth				, Rep	beat x3 tim	Ies	/ # of filt
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112			7×7, 64, stride 2	2		
		3×3 max pool, stride 2				×	
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1		av	erage pool, 1000-d fc,	softmax		
FLO	OPs	1.8×10^{9}	3.6×10^9	3.8×10^9	7.6×10^{9}	11.3×10^{9}	

ResNet Architecture Various depth

				, 1+ 2	2x3 + 2x4	+ 2x6 + 2>	
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112			7×7, 64, stride 2	2		
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times2$	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	1 4×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^{9}	

ResNet Training Curves on ImageNet [He et al., 2015]

70

A Bit More on ResNets

Idea: Residual (skip) connections help make learning easier

- Note: Can also analyze from backpropagation p.o.v
 - Residual connections add paths to computation graph
- Also uses batch normalization
 - Normalize the features at each layer to have same mean/variance
 - Common deep learning trick
- Highway networks: learn weights for residual connections

Ioffe and Szegedy: "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"

Evolution of CNNs

ImageNet competition (error rate)

Credit: Stanford CS 231n

Acknowledgement:

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li: <u>https://courses.d2l.ai/berkeley-stat-157/index.html</u>