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Announcements

* HW4 was due today morning

* HWS5 due on Apr 3



High-Dimensional Data

*High-dimensions = lots of features

 Document classification

* Features per document = thousands of words/unigrams millions of
bigrams, contextual information

*Example: Surveys - Netflix
480189 users x 17770 movies

movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6

Tom 5 ? 7 1 3 7
George ? ? 3 1 2 5
Susan 4 3 1 ? 5 1
Beth 4 3 ¢ 2 4 2




Dealing with Dimensionality

*PCA, Kernel PCA, ICA: Powerful unsupervised learning
techniques for extracting hidden (potentially lower

dimensional) structure from high dimensional datasets.

eSome uses:
*Visualization

* More efficient use of resources (e.g., time, memory,
communication)

* Noise removal (improving data quality)

PCA

component space



PCA Intuition

*The dimension of the ambient space (ie, RY) might be much
higher than the intrinsic data dimension

*Can we transform the features so
that we store each point using \/
fewer coordinates and still preserve

most of the information?

*PCA: Projects the data into a lower dimensional subspace so
that the variance of the projected data is maximized.



PCA Intuition

eSome more visualizations
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*In case where data lies on or near a low d-dimensional linear
subspace, axes of this subspace are an effective
representation of the data.



PCA: Principal Components

*Principal Components (PCs) are orthogonal directions that
capture most of the variance in the data.

* First PC — direction of greatest variability in data.

* Projection of data points along first PC stores most of the
information in the data most along any one direction



PCA Overview

*How does dimensionality reduction work? From d
dimensions to r dimensions:

*Get d
V1. V9.....0. €ER
* Orthogonal! Ly V2 P

Victor Powell



PCA First Step

*First component,
n

v; = arg max Y (v,x;)°
lvll=1 =

*Same as getting

v1 = arg max || Xv||”
v]l=1



PCA Recursion

*Once we have k-1 components, next?

k—1
Xk = X — Z XUZ'U;-F
1=1

Deflation

*Then do the same thing

v, = arg max || Xwl|?
vll=1



PCA Interpretations

*The v’s are eigenvectors of X’X (Gram matrix)

*X'X is the sample covariance matrix!
*When data has 0 mean.
*|.e., PCA is eigendecomposition of sample covariance

*Finding v; = arg ”mHaX | Xvl?
v||=1

* First eigenvector of the covariance matrix!
* Or, equivalently, first right singular vector of the data matrix X.



PCA Interpretations: Equivalence

n

*Interpretation 1. 2:(\,-7’}(2-)2 — vIxxTy
Maximum variance direction i—1
n
T 2
*Interpretation 2. Z Ix; — (v x;)v|]

Minimum reconstruction error

*Do at home (show that these two are equivalent)



How to choose r?

*Only keep data projections onto principal components with
large eigenvalues of X'X (singular values of X)

*Look for “knee point”
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Application: Image Compression

Start with image; divide into 12x12 patches
*|.E., 144-D vector

* Original image:




Application: Image Compression

*Project to 6D,

Compressed Original



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov



