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Announcements	

	
• 	HW4	was	due	today	morning	

• 	HW5	due	on	Apr	3	

 
  
 



High-Dimensional	Data	

• High-dimensions	=	lots	of	features	
• Document	classification	

• Features	per	document	=	thousands	of	words/unigrams	millions	of	
bigrams,		contextual	information	

• Example:	Surveys	-	Netflix	
	 		480189	users	x	17770	movies	



Dealing	with	Dimensionality	

• PCA,	Kernel	PCA,	ICA:	Powerful	unsupervised	learning	
techniques	for	extracting	hidden	(potentially	lower	
dimensional)	structure	from	high	dimensional	datasets.	

• Some	uses:	
• Visualization	 		
• More	efficient	use	of	resources	(e.g.,	time,	memory,	
communication)	

• Noise	removal	(improving	data	quality)	

		



PCA	Intuition	
• The	dimension	of	the	ambient	space	(ie,	Rd)	might	be	much	
higher	than	the	intrinsic	data	dimension	
	
• Can	we	transform	the	features	so	
that	we	store	each	point	using	
fewer	coordinates	and	still	preserve	
most	of	the	information?	
	
	

• PCA:	Projects	the	data	into	a	lower	dimensional	subspace	so	
that	the	variance	of	the	projected	data	is	maximized.	



PCA	Intuition	

• Some	more	visualizations	

• In	case	where	data		lies	on	or	near	a	low	d-dimensional	linear	
subspace,	axes	of	this	subspace	are	an	effective	
representation	of	the	data.	

		



PCA:	Principal	Components	

• Principal	Components	(PCs)	are	orthogonal	directions	that	
capture	most	of	the	variance	in	the	data.	

• First	PC	–	direction	of	greatest	variability	in	data.	
• Projection	of	data	points	along	first	PC	stores	most	of	the	
information	in	the	data	most	along	any	one	direction		



PCA	Overview	

• How	does	dimensionality	reduction	work?	From	d	
dimensions	to	r	dimensions:	
• Get	
• Orthogonal!	

	

Victor	Powell	



PCA	First	Step	

• First	component,	

• Same	as	getting	

		



PCA	Recursion	

• Once	we	have	k-1	components,	next?	

• Then	do	the	same	thing	

		

Deflation	



PCA	Interpretations	

• The	v’s	are	eigenvectors	of	XTX	(Gram	matrix)	

• XTX	is	the	sample	covariance	matrix!	
• When	data	has	0	mean.	
• I.e.,	PCA	is	eigendecomposition	of	sample	covariance	
	

• Finding		
	
• First	eigenvector	of	the	covariance	matrix!	
• Or,	equivalently,	first	right	singular	vector	of	the	data	matrix	X.	



PCA	Interpretations:	Equivalence	

• Interpretation	1.		
Maximum	variance	direction		

	
• Interpretation	2.		
Minimum	reconstruction	error	
	
• Do	at	home	(show	that	these	two	are	equivalent)	



How	to	choose	r?	

• Only	keep	data	projections	onto	principal	components	with	
large	eigenvalues	of	XTX	(singular	values	of	X)	

• Look	for		“knee	point” 		



Application:	Image	Compression	

• Start	with	image;	divide	into	12x12	patches	

• I.E.,	144-D	vector	
	

• Original	image:	
	



Application:	Image	Compression	

• Project	to	6D,		

Compressed	 Original	



Thanks Everyone!

Some	of	the	slides	in	these	lectures	have	been	adapted/borrowed	from	materials	developed	by	Mark	Craven,	
David	Page,	Jude	Shavlik,	Tom	Mitchell,	Nina	Balcan,	Elad	Hazan,	Tom	Dietterich,	Pedro	Domingos,	Jerry	Zhu,	
Yingyu	Liang,	Volodymyr	Kuleshov		


