

CS 760: Machine Learning
Unsupervised Learning II: Dimensionality Reduction

Kirthi Kandasamy

University of Wisconsin-Madison
March 20, 2023

Announcements

- HW4 was due today morning
- HW5 due on Apr 3

High-Dimensional Data

- High-dimensions = lots of features
- Document classification
- Features per document = thousands of words/unigrams millions of bigrams, contextual information
-Example: Surveys - Netflix
480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	$?$	$?$	1	3	$?$
George	$?$	$?$	3	1	2	5
Susan	4	3	1	$?$	5	1
Beth	4	3	$?$	2	4	2

Dealing with Dimensionality

-PCA, Kernel PCA, ICA: Powerful unsupervised learning techniques for extracting hidden (potentially lower dimensional) structure from high dimensional datasets.

- Some uses:
- Visualization
- More efficient use of resources (e.g., time, memory, communication)
- Noise removal (improving data quality)

PCA Intuition

-The dimension of the ambient space (ie, R^{d}) might be much higher than the intrinsic data dimension

- Can we transform the features so that we store each point using fewer coordinates and still preserve most of the information?
-PCA: Projects the data into a lower dimensional subspace so that the variance of the projected data is maximized.

PCA Intuition

- Some more visualizations

- In case where data lies on or near a low d-dimensional linear subspace, axes of this subspace are an effective representation of the data.

PCA: Principal Components

- Principal Components (PCs) are orthogonal directions that capture most of the variance in the data.
- First PC - direction of greatest variability in data.
- Projection of data points along first PC stores most of the information in the data most along any one direction

PCA Overview

- How does dimensionality reduction work? From d dimensions to r dimensions:
- Get
-Orthogonal!

$$
v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}
$$

PCA First Step

- First component,

$$
v_{1}=\arg \max _{\|v\|=1} \sum_{i=1}^{n}\left\langle v, x_{i}\right\rangle^{2}
$$

- Same as getting

$$
v_{1}=\arg \max _{\|v\|=1}\|X v\|^{2}
$$

PCA Recursion

- Once we have k-1 components, next?

$$
\hat{X}_{k}=X-\sum_{i=1}^{k-1} X v_{i} v_{i}^{T}
$$

-Then do the same thing

$$
v_{k}=\arg \max _{\|v\|=1}\left\|\hat{X}_{k} w\right\|^{2}
$$

PCA Interpretations

-The v's are eigenvectors of $X^{\top} X$ (Gram matrix)

- $X^{\top} X$ is the sample covariance matrix!
-When data has 0 mean.
-l.e., PCA is eigendecomposition of sample covariance
- Finding $\quad v_{1}=\arg \max _{\|v\|=1}\|X v\|^{2}$
- First eigenvector of the covariance matrix!
- Or, equivalently, first right singular vector of the data matrix X .

PCA Interpretations: Equivalence

- Interpretation 1.

Maximum variance direction

- Interpretation 2.

Minimum reconstruction error

$$
\sum_{i=1}^{n}\left(\mathbf{v}^{T} \mathbf{x}_{i}\right)^{2}=\mathbf{v}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v}
$$

$$
\sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\left(\mathbf{v}^{T} \mathbf{x}_{i}\right) \mathbf{v}\right\|^{2}
$$

- Do at home (show that these two are equivalent)

How to choose r?

- Only keep data projections onto principal components with large eigenvalues of $X^{\top} X$ (singular values of X)
- Look for "knee point"

Application: Image Compression

- Start with image; divide into 12×12 patches
- I.E., 144-D vector
- Original image:

Application: Image Compression

- Project to 6D,

Compressed

Original

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov

