

CS 760: Machine Learning Unsupervised Learning III: Generative Models

Kirthi Kandasamy

University of Wisconsin-Madison

March 22, 2023

Outline

Intro to Generative Models

•histograms,

•Flow-based Models

•Transformations, training, sampling

•Generative Adversarial Networks (GANs)

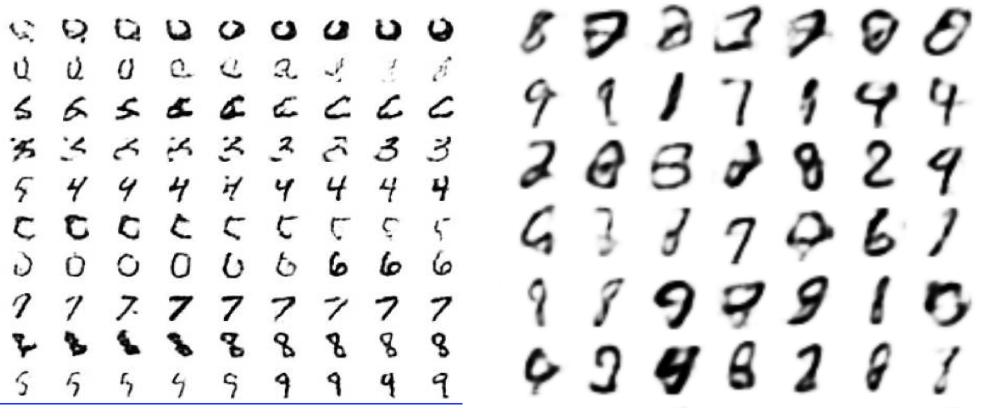
• Generators, discriminators, training, examples

Generative Models

•Goal: learn an underlying process for (unlabeled) data.

Applications: Generate Images

- •Old idea---tremendous growth
- Historical evolution:

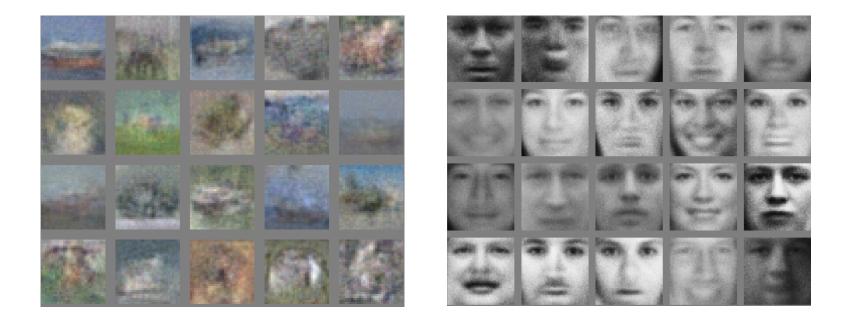


2006: Hinton et al

2013: Kingma & Welling

Applications: Generate Images

More recently, GAN models: 2014
Goodfellow et al



Applications: Generate Images

•More recently, GAN models

• StyleGAN, Karras, Laine, Aila, 2018

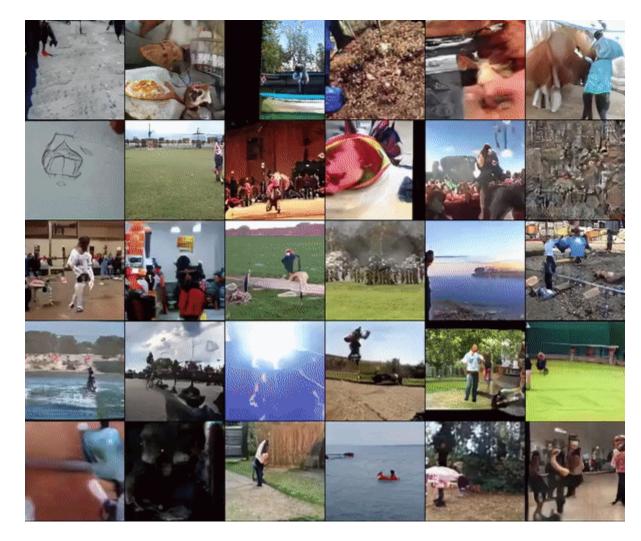
Applications: Generate Images/Video

- •GANs can also generate video
 - Plus transfer:

CycleGAN: Zhu, Park, Isola & Efros, 2017

Applications: Generate Video

•GANs can also generate video (DVD-GAN, Clark et al)



Additional Applications

•Compress data

- Can often do better than fixed methods like JPEG
- Similar to nonlinear dimensionality reduction

Obtain good representations

- Then can fine-tune for particular tasks
- Unlabeled data is cheap, labeled data is not.

Goal: Learn a Distribution

•Want to estimate p_{data} from samples

$$x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$$

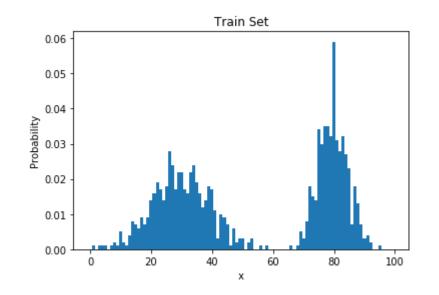
- •Useful abilities to have:
 - Inference: compute p(x) for some x
 - **Sampling**: obtain a sample from p(x)

Goal: Learn a Distribution

 $\bullet Want$ to estimate p_{data} from samples

$$x^{(1)}, x^{(2)}, \dots, x^{(n)} \sim p_{\text{data}}(x)$$

- •One way: build a histogram:
- •Bin data space into k groups.
 - Estimate p₁, p₂, ..., p_k
- •Train this model:
 - Count times bin i appears in dataset



Histograms: Inference & Samples

- •Inference: check our estimate of p_i
- •Sampling: straightforward
- •But ...
 - inefficient in high dimensions

Parametrizing Distributions

• Don't store each probability, store $p_{\theta}(x)$

•One approach: likelihood-based

• We know how to train with maximum likelihood

$$\arg\min_{\theta} -\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(x^{(i)})$$

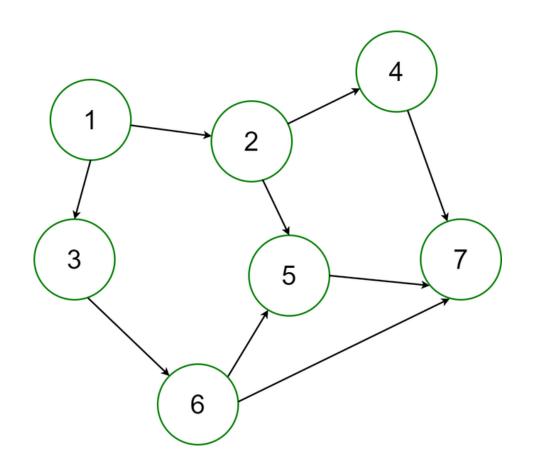
Parametrizing Distributions

•One approach: likelihood-based

- We know how to train with **maximum likelihood**
- Then, train with SGD
- Just need to make some choices for $p_{\theta}(x)$

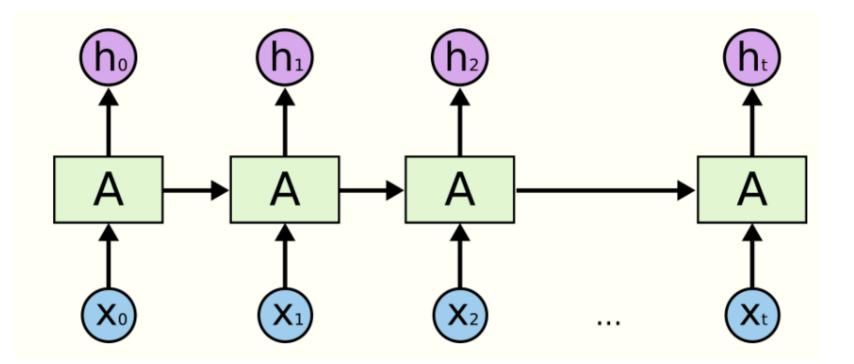
Parametrizing Distributions: Bayes Nets

•Coming up next week.



Parametrizing Distributions: Autoregressive models

•Later in class



Flow Models

- •One way to specify $p_{\theta}(x)$
- •Use a latent variable z with a "simple" (e.g normal) distribution.
- •Then use a "complex" transformation $x=f_ heta(z)$

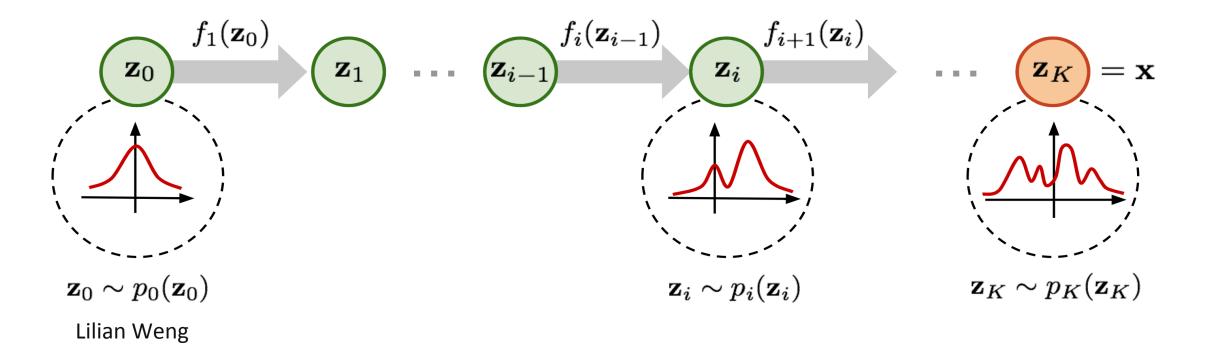
Flow Models

- •We will need to compute the inverse transformation and take its derivative as well.
- So compose of multiple "simple" transformations

$$egin{aligned} x &= f_{ heta_k}(f_{ heta_{k-1}}(\dots f_{ heta_1}(z))) \ z &= f_{ heta_1}^{-1}(f_{ heta_2}^{-1}(\dots f_{ heta_k}^{-1}(x))) \end{aligned}$$

Flow Models

•Transform a simple distribution to complex via a chain of invertible transformations (the "flow")



Flow Models: How to sample?

- •Sample from Z (the latent variable)---has a simple distribution that lets us do it: Gaussian, uniform, etc.
- •Then run the sample z through the flow to get a sample x

Flow Models: How to train?

•Relationship between $p_x(x)$ and $p_z(z)$ (densities of x and z), given that $x = f_{ heta}(z)$?

$$p_x(x) = p_z(f_ heta^{-1}(x))$$

$$rac{\partial f_{ heta}^{-1}(x)}{\partial x}$$

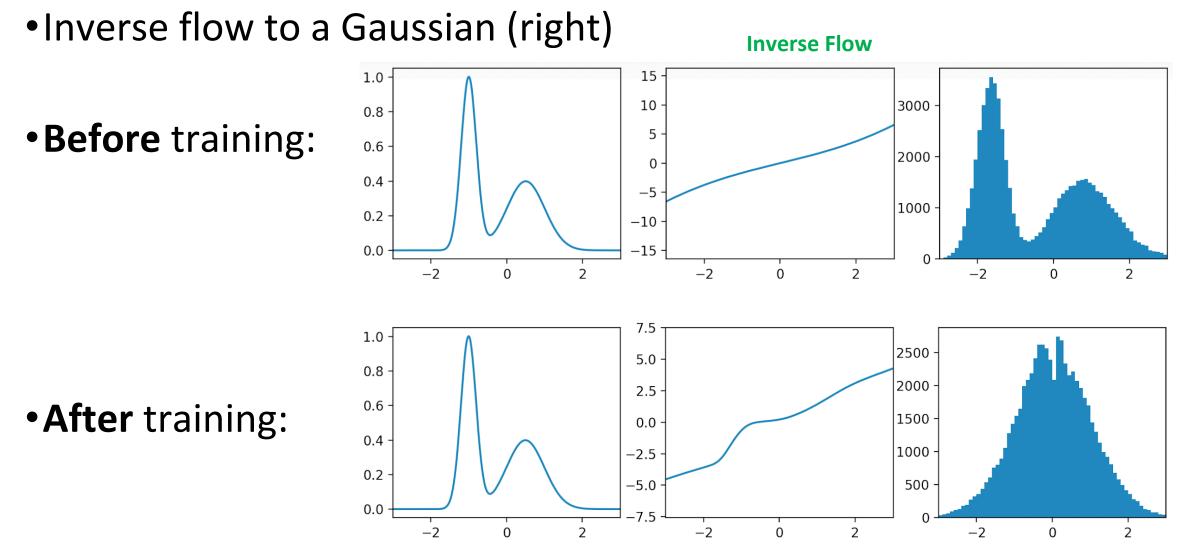
Determinant of Jacobian matrix

Flow Models: Training

$$\max_{\theta} \sum_{i} \log \left(p_x(x^{(i)}; \theta) \right) = \max_{\theta} \left(\sum_{i} \log \left(p_z(f_{\theta}^{-1}(x^{(i)})) \right) + \log \left| \frac{\partial f_{\theta}^{-1}(x^{(i)})}{\partial x} \right| \right)$$

$$\bigwedge_{\substack{\text{Maximum}\\\text{Likelihood}}} \int_{\substack{\text{Latent variable}\\\text{version}}} \int_{\substack{\text{Determinant of}\\\text{Jacobian matrix}}} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{$$

Flows: Example



UC Berkeley: Deep Unsupervised Training

Flows: Transformations

- •What kind of f transformations should we use?
- Many choices:
 - Affine: $f(x) = A^{-1}(x b)$
 - Elementwise: $f(x_1, ..., x_d) = (f(x_1), ..., f(x_d))$
 - Splines:
- Desirable properties:
 - Invertible
 - Differentiable

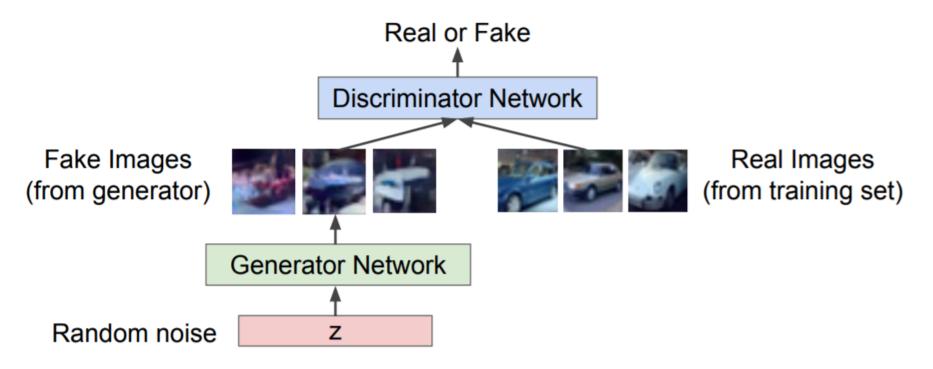
GANs: Generative Adversarial Networks

- •So far, we've been modeling the density...
 - What if we just want to get high-quality samples?
- •GANs do this.
 - Think of art forgery
 - Left: original
 - Right: forged version
 - Two-player game. Forger wants to pass off the forgery as an original; investigator wants to distinguish forgery from original

GANs: Basic Setup

•Let's set up networks that implement this idea:

- Discriminator network: like the investigator
- Generator network: like the **forger**



Stanford CS231n / Emily Denton

GAN Training: Discriminator

- •How to train these networks? Two sets of parameters to learn: θ_d (discriminator) and θ_g (generator)
- •Let's fix the generator. What should the discriminator do?
 - Distinguish fake and real data: binary classification.
 - Use the cross entropy loss, we get

$$\max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

$$\uparrow \qquad \uparrow$$
Real data, want
to classify 1
Fake data, want
to classify 0

GAN Training: Generator & Discriminator

- •How to train these networks? Two sets of parameters to learn: θ_d (discriminator) and θ_g (generator)
- •This makes the discriminator better, but also want to make the generator more capable of fooling it:
 - Minimax game! Train jointly.

$$\begin{split} \min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \\ \uparrow \\ & \uparrow \\ \text{Real data, want} \\ \text{to classify 1} \\ \end{split}$$

GAN Training: Alternating Training

•So we have an optimization goal:

 $\min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$

- •Alternate training:
 - **Gradient ascent**: fix generator, make the discriminator better:

$$\max_{\theta_d} \mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

• Gradient descent: fix discriminator, make the generator better

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

GAN Training: Issues

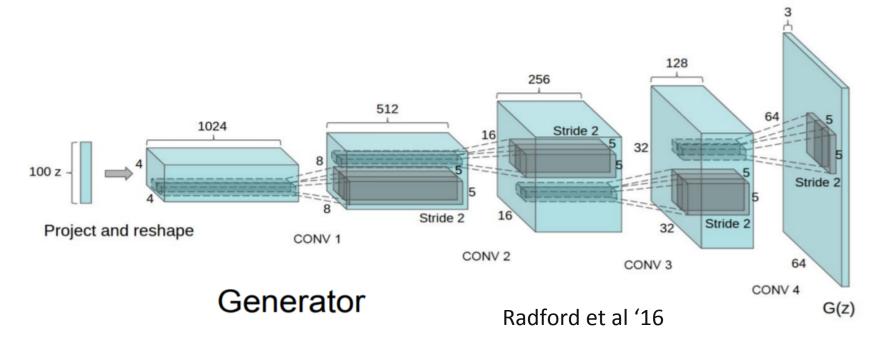
- •Training often not stable
- Many tricks to help with this:
 - Replace the generator training with

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

- Better gradient shape
- Choose number of alt. steps carefully
- •Can still be challenging.

GAN Architectures

- **Discriminator**: image classification, use a **CNN**
- What should **generator** look like
 - Input: noise vector z. Output: an image (ie, volume 3 x width x height)
 - Similar to a reversed CNN pattern...



GANs: Example

•From Radford's paper, with 5 epochs of training:

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas