3 Foy e
B I I s
“aiet, 1"
Vo [R SRS C ik, R
1" pom - - y' ¥]

a2 S L e S S S e e ey
A RTINS e T WA

n L -

Wil

TN X

S

L

CS 760: Machine Learning
Unsupervised Learning lll: Generative Models

==

Kirthi Kandasamy

University of Wisconsin-Madison

March 22, 2023

Outline

°Intro to Generative Models
*histogrames,

*Flow-based Models
*Transformations, training, sampling

*Generative Adversarial Networks (GANs)
* Generators, discriminators, training, examples

Generative Models

*Goal: learn an underlying process for (unlabeled) data.

Applications: Generate Images

*Old idea---tremendous growth

*Historical evolution:

QN0
OV~
N = QO™
M~
R~ OP
MNP Ny
NMENMT - O

P =NUNFT+-I3 Nee o
- NMNMTLULA NPT
JHyNVKLIFLE NP o
ol de, LD N2 o
399N U NP
VNI VON#
VWL ITUOIONS
FIYEV,XTPONL
S~ TV U " N § e B S ARV

2013: Kingma & Welling

2006: Hinton et al

Applications: Generate Images

*More recently, GAN models: 2014
* Goodfellow et al

Applications: Generate Images

* More recently, GAN models

Applications: Generate Images/Video

*GANSs can also generate video
* Plus transfer:

CycleGAN: Zhu, Park, Isola & Efros, 2017

Applications: Generate Video

[y

*GANSs can also generate video (DVD-GAN, Clark et al)

\4‘. o A T B
sovh Waka et 4

.«

Additional Applications

Compress data
* Can often do better than fixed methods like JPEG
 Similar to nonlinear dimensionality reduction

*Obtain good representations
* Then can fine-tune for particular tasks
* Unlabeled data is cheap, labeled data is not.

Goal: Learn a Distribution

*Want to estimate p,.,, from samples

:E(l)vx(z)a S 737(”/) it pdata(x)

e Useful abilities to have:
* Inference: compute p(x) for some x
* Sampling: obtain a sample from p(x)

Goal: Learn a Distribution

*Want to estimate p,.,, from samples

(1) (2)

9 7”'733(”) diata(x)

*One way: build a histogram:

*Bin data space into k groups.
* Estimate p4, p,, ..., Py

0.06

Probability

* Count times bin i appears in dataset

0.02 1

0.01

0.00 -

0.05 A1

*Train this model:

0.03 1

100

Histograms: Inference & Samples

*Inference: check our estimate of p,
. . straightforward

*But ...
* inefficient in high dimensions

Parametrizing Distributions
*Don’t store each probability, store pg(x)

*One approach: likelihood-based

e We know how to train with maximum likelihood

1 < .
N — — 1 (%)
arg min —-— Z og po(z*")

1=1

Parametrizing Distributions

*One approach: likelihood-based

* We know how to train with maximum likelihood
* Then, train with SGD

*Just need to make some choices for pg(x)

Parametrizing Distributions: Bayes Nets

*Coming up next week.

Parametrizing Distributions: Autoregressive models

elLater in class

>

h b h)
L1 |
= A
6 & ©

@—>—®

Flow Models
*One way to specify pg(x)

*Use a latent variable z with a “simple” (e.g normal)
distribution.

*Then use a “complex” transformation x = fy(2)

Flow Models

*We will need to compute the inverse transformation and
take its derivative as well.

* So compose of multiple “simple” transformations

T — f@k(fHk—1(‘ * fel(z)))
2= fo, (£, (- £, ()

Flow Models

*Transform a simple distribution to complex via a chain of
invertible transformations (the “flow”)

f1(zo) fz(Zz 1) fiv1(24)
@)= @ - =) (o=
/I\ : J\/\ /\AIW\

' /

zy ~ po(zo) z; ~ pi(z;) ZK ~ pK(ZK)

Lilian Weng

Flow Models: How to sample?

Sample from Z (the latent variable)---has a simple
distribution that lets us do it: Gaussian, uniform, etc.

*Then run the sample z through the flow to get a sample x

Flow Models: How to train?

*Relationship between pz(x) and p.(z) (densities of x and z),

given that * = fH(Z)?
0fy ()

px(il?) — pz(fg_l(m))

Flow Models: Training

mgxz;log(px(w(i);é’)) = max (Z log(pz(fe_ 1(fc(i)))) + log

— 1 1

afe_l(a:(i))

ox

Latent variable Determinant of

Maximum
Likelihood

version Jacobian matrix

Flows: Example

*Inverse flow to a Gaussian (right)

Inverse Flow

1.0 15 -
0.8 - 101 3000 -
*Before training: .l 5
0_
0.4 - .
0.2 104
0.0 A : . ; —15 - . . .
-2 0 2 -2 0 2
10- 7.5
504 2500 -
0.8 1 '
2.5 2000 -
° [] . 06 -
* After training:
4 ~2.51 1000 A
0.2 1 . 0.
0.0 1T— : : -75 : : , 0-
-2 0 2 -2 0 2

UC Berkeley: Deep Unsupervised Training

Flows: Transformations

\What kind of f transformations should we use?

*Many choices:
* Affine: f(x) = A1(x - b)
* Elementwise: f(xy, ..., x4) = (f(xy), .., f(x,))
*Splines:

*Desirable properties:
* Invertible
* Differentiable

GANSs: Generative Adversarial Networks

*So far, we’ve been modeling the density...
* What if we just want to get high-quality samples?

* GANSs do this.

* Think of art forgery
* Left: original

* Right: forged version

* Two-player game. Forger wants to pass off the
forgery as an original; investigator wants to
distinguish forgery from original

GANSs: Basic Setup

*|Let’s set up networks that implement this idea:
* Discriminator network: like the investigator
* Generator network: like the forger

Real or Fake

¢

Discriminator Network

Fake Images | Real Images
(from generator) | | - - (from training set)
Generator Network

*

Random noise z

Stanford CS231n / Emily Denton

GAN Training: Discriminator

*How to train these networks? Two sets of parameters to
learn: 6 (discriminator) and 6, (generator)

*Let’s fix the generator. What should the discriminator do?
* Distinguish fake and real data: binary classification.
* Use the cross entropy loss, we get

s Ez~paasa 108 Do, () + E.op2y log(1 — Dy, (G, (2)))
f I

Real data, want Fake data, want
to classify 1 to classify 0

GAN Training: Generator & Discriminator

*How to train these networks? Two sets of parameters to
learn: 6 (discriminator) and 6, (generator)

*This makes the discriminator better, but also want to make
the generator more capable of fooling it:
* Minimax game! Train jointly.

min max
0, 04

@ ~paata 108 Do, () +

1

Real data, want
to classify 1

“:Z,\Jp(z) log(l — DOd (G99 (Z)))

T

Fake data, want
to classify 0

GAN Training: Alternating Training

*So we have an optimization goal:

min max

@ ~opanc 108 Do, () +

0, 04

* Alternate training:
* Gradient ascent: fix generator, make the discriminator better:

Imax EiUdiata lOg DQd (CU) + Ezwp(z) log(l . Ded (Geg (Z)))

0

4:z~p(z) log(l — DQd (GQg (Z)))

* Gradient descent: fix discriminator, make the generator better

Og

mink, ;) log(1 — Dy, (Go,(2)))

GAN Training: Issues

*Training often not stable

*Many tricks to help with this:
* Replace the generator training with

I%?X <1:zwp(z) log(DQd (Geg (Z)))

* Better gradient shape
* Choose number of alt. steps carefully

*Can still be challenging.

GAN Architectures

*Discriminator: image classification, use a CNN

*What should generator look like

* Input: noise vector z. Output: an image (ie, volume 3 x width x
neight)

* Similar to a reversed CNN pattern...

Stride 2 16

ey s #:,:_‘
Project and reshape CONV 1
CONV 2 —— 64

Generator Radford et al ‘16 2

GANSs: Example

*From Radford’s paper, with 5 epochs of training:

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas

