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Announcements

eLecture recordings for last 4 lectures out

 (Small issue with last recording, use slides from the webpage to
follow along)

* HW 5 due next Monday.



Outline

*Probability Review
*Basics, joint probability, conditional probabilities, etc

*Bayesian Networks
*Definition, examples, inference, learning

*Undirected Graphical Models

*Definitions, MRFs, exponential families

*Structure learning
*Chow-Liu Algorithm
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Basics: Joint Distributions

eJoint distribution of 2 random variables X and Y



Basics: Marginal Probability

*Given a joint distribution
P(X =a,Y =)
*Compute the distribution of just one variable:
P(X=a)=Y,P(X =a,Y =)

*This is the “marginal” distribution.



Basics: Marginal Probability

P(X=a)=),P(X=aY =0

Sunny | Cloudy | Rainy

hot | 150/365 | 40/365 | 5/365

cold 150/365 1 60/365 | 60/365

'P(hot), P(cold)] = | égg, égg]




Independence

*Independence for asetofevents A4, ..., AL

P(Ai Aiy --- Aiy) = P(Ai, )P(Ai,) - P(Ay))
for all the 1300l combinations

*Why useful? Dramatically reduces the complexity

*Collapses joint into product of marginals

*Note sometimes we have only pair-wise, etc
independence



Uncorrelatedness

*For random variables, uncorrelated means

E[XY] = E[X]|E[Y]

Note: weaker than independence.
*Independence implies uncorrelated (easy to see)
If X,Y independent, functions are not correlated:



Conditional Probability

*When we know something,

P(X —aly =p) = LE=aY =D

P(Y =b)
*Conditional independence

P(X,Y|Z) = P(X|Z)P(Y|Z)

Credit: Devin Soni



Chain Rule

*Apply repeatedly,
P(A1, Ay, ..., A,)
= P(A))P(As| A1) P(As|Ag, Ay) ... P(Ap| A1, ..., Ay)
*Note: still big!
*If some conditional independence, can factor!
*Leads to probabilistic graphical models (this lecture)



Law of Total Probability

*Partition the sample space into disjoint B, ..., B,
*Then,

P(A) = Y P(A|B)P(B)



Bayesian Inference

*Bayes rule:

P(E,,...,E,|H)P(H
P(H|Ey, ... E,) = LE - EnlH)PU)

P(Ey, Es, ..., Ey,)

Under conditional independence

P(Ey|H)P(Ey|H)- -, P(Eq|H)P(H)
FUIEL B ) = P(E, Es, ..., Ey,)




Random Vectors & Covariance

*Recall variance: (X — E[X])2]

*For a random vector
* Note: size d x d. All variables are centered

E[(X; — E[X1])?] . [(Xy = EXGD (X, — E[X])]

(X — ERX) (X1 — E[X1))] ... E[(X, — E[X,])’]

e /

Diagonals: Variance

Covariance



Break & Quiz



Break & Quiz

50% of emails are spam. Software has been applied to filter
spam. A certain brand of software claims that it can detect
99% of spam emails, and the probability for a false positive (a
non-spam email detected as spam) is 5%. Now if an email is
detected as spam, then what is the probability that it is in fact
a nonspam email?

A. 5/104
B. 95/100
C. 1/100
D. 1/2
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Bayesian Networks Example

*Consider the following 5 binary random variables:

B = a burglary occurs at the house

E = an earthquake occurs at the house
A = the alarm goes off

J =John calls to report the alarm

M = Mary calls to report the alarm

*Suppose the Burglary or Earthquake can trigger Alarm, and
Alarm can trigger John’s call or Mary’s call

*Now we want to answer queries like whatis P(B | M, J) ?



Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
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Bayesian Networks Example

*Set up a network that shows how random variables influence

others:

P(B) Burglary Earthquake PLE)

t f t f

0.001  0.999 0.001  0.999

P(A/|BE)

B E t f
t t 095  0.05
t f 094  0.06
f t 029  0.71
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P(J]A)

t f

0.9 0.1




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
P(B) Burglary Earthquake PLE)
t f
t f
0.001  0.999 0.001  0.999
P(A|BE)
B E t f
t t 095  0.05
t f 0.94  0.06
f t 0.29 0.71
f f 0.001  0.999
P(J]A) b(M | A
! J A t f
09 01 t 0.7 0.3
005 0% f 0.01 0.99




Bayesian Networks: Definition

* A BN consists of a Directed Acyclic Graph (DAG) and a set of
conditional probability distributions (CPD)

* The DAG:
* each node denotes a random variable
* each edge from X to Y typically represents a causal link from X to Y

* formally: each variable X is independent of its non-descendants given its
parents

* Each CPD: represents P(X | Parents(X) ) (B > CED

p(x1,...,7q) = [ P(@o]Tpace)) <

cV
v D Cv>



Bayesian Networks: Parameter Counting

e Parameter reduction: standard representation of the joint
distribution for Alarm example has 2°-1 = 31 parameters

* the BN representation of this distribution has 10 parameters

P(B,E,A,J,M)
= P(B)
x P(E)
x P(A|B,E)
x P(J | A)

x P(M | 4)



Inference in Bayesian Networks

Given: values for some variables in the network (evidence),
and a set of query variables

Do: compute the posterior distribution over the query
variables

*Variables that are neither evidence variables nor query
variables are hidden variables

*The BN representation is flexible enough that any set can be
the evidence variables and any set can be the query variables



Inference by Enumeration

*Let a denote A=true, and —a denote A=false
*Suppose we're given the query: P(b | j, m)
“probability the house is being burglarized given that John
and Mary both called”

*From the graph structure we can first compute:
B &) P, j.m) =Y S P()P(E)P(A|b,E)P(j| A)P(m | A)
0 sum over possible
values for Fand A
o @ variables (e, —e, a, —a)



Inference by Enumeration

P(b.jim) = 3 3 POPEIP(A| b.EYP(j| )P | 4

P(B)

0.001

P(A)

-n =h e~ e~ Oy

—h-r—h-rm

0.95
0.94
0.29
0.001

= PO)Y 3 PEYPAIBEIP( | A)POn | 4

P(E)

0.001

A P(J)

e,~ea,~a

=0.001x(0.001x0.95%x0.9%0.7 +
0.001x0.05%x0.05x0.01 +
0.999x0.94%x0.9%0.7 +
0.999 x0.06x0.05x%0.01)

f 0.05

PM)

e N

0.7
0.01




Inference by Enumeration

*Next do equivalent calculation for P(—b, j, m)
and determine P(b | j, m)

P(b, j,m) P(b, j,m)

P(b|j,m)= P(j,m) P(b,j,m)+ P(=b, j,m)

So: exact method, but can be intractably hard.

Efficient for small BNs
* Approximate inference sometimes available



Learning Bayes Nets

*Problem 1 (parameter learning): given a set of training
instances, the graph structure of a BN

Earthquake

= |

*Goal: infer the parameters of the CPDs



Learning Bayes Nets

*Problem 2 (structure learning): given a set of training
Instances

= = |
= = —h | T
—h o h |

*Goal: infer the graph structure (and then possibly also the
parameters of the CPDs)



Parameter Learning: MLE

*Goal: infer the parameters of the CPDs
* As usual, can use MLE

L(6:D,G)=P(D|G,0) = Hp(xfd>,x§d>,...,x§ﬁ>)

deD

— D n P(x'” | Parents(x\")))
eD i

- 1_[ (D P(x? | Parents(x\")))

\ )
|

independent parameter learning
problem for each CPD



Parameter Learning: MLE Example

*Goal: infer the parameters of the CPDs

*Consider estimating the CPD parameters for B and J in the
alarm network given the following data set

P(b) = % = 0.125

B E A J M :
£ £ £ t £ P(—-b)=§=0.875
(4) f r f £ £ . 3,
£ £ £ { t (jlay=7=075
OXO oot bt pla) =2 =025
f f t t f 4
f f t f t P(j|—-a)=g=0.5
£ £ { { ¢ 42
f £ I I I P(—-j|—-a)=z=0.5




Parameter Learning: MLE Example

*Goal: infer the parameters of the CPDs

*Consider estimating the CPD parameters for B and J in the
alarm network given the following data set

P(b)=g=

P(ﬁb)=§=

do we really want to
set this to 0?

c—rc—rc—rc—r’—b’—b’—b’—b:k

J
t
f
t
f
t
f
t
t

- o R =R R = =+ | T

M
f
f
t
t
f
t
t
t

— o MmO




Parameter Learning: Laplace Smoothing

*Instead of estimating parameters strictly from the data, we
could start with some prior belief for each

*For example, we could use Laplace estimates

veValues(X)

pseudocounts

where n, represents the number of occurrences of value v
*Recall: we did this for Naive Bayes



Break & Quiz



Q2-1: Consider a case with 8 binary random variables, how many
parameters does a BN with the following graph structure have?

1. 12
2. 14
3. 16
4. 20



Q2-1: Consider a case with 8 binary random variables, how many
parameters does a BN with the following graph structure have?

1. 12
2. 14

3. 16 (u—

4. 26

So we have 16 parameters in total.
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Undirected Graphical Models

*Still want to encode conditional independence, but not in an
causal way (ie, no parents, direction)

* Why? Allows for modeling other distributions that Bayes nets can't,
allows for other algorithms

*Graph directly encodes a type of conditional
independence. If nodes i,j are not neighbors,

X L X1 X i,




Markov Random Fields

* A particularly popular kind of undirected model. As above,
can describe in terms of:

* 1. Conditional independence: Xz 1 Xj ‘XV\{"L 7}

e 2. Factorization. (Clique: maximal fully-connected subgraphs)
* Bayes nets: factorize over CPTs with parents; MRFs: factorize over cliques

P(X) :% 1] cbc(XC)

/ C'ecliques(G /

Partition function Potential functions




Ising Models

*|sing models: a particular kind of MRF usually written in
exponential form
* Popular in statistical physics
* ldea: pairwise interactions (biggest cliques of size 2)

1
P(x1,...,2q) = = exp( Oijriry)
Z (”z); zu P ® @@@6

’Cha”engeS: Khudier and Fawaz @ _____ @ @ @ C

* Compute partition function

* Perform inference/marginalization @ """ @ @ @ Q
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Structure Learning

*Generally a hard problem, many approaches.
* Exponentially (or worse) many structures in # variables

e Can either use heuristics or restrict to some tractable subset of
networks. Ex: trees

*Chow-Liu Algorithm

e Learns a BN with a tree structure that maximizes the likelihood of
the training data

1. Compute weight I(X;, X;) of each possible edge (X, X)
2. Find maximum weight spanning tree (MST)



Chow-Liu: Computing weights
* Use mutual information to calculate edge weights

P(x,
P(x, y)log, — %))

I(X,Y) = 2
xEvalues(X) y&values(Y) P(X)P(y)

*The probabilities are calculated empirically using data



Chow-Liu: Finding MST
* Many algorithms for calculating MST (e.g Kruskal’s, Prim’s)

*Kruskal’s algorithm

given: graph with vertices V and edges E

Epew <13
for each (u, v) in E ordered by weight (from high to low)
{

remove (u,v) from E

if adding (u, v) to E,,,, does not create a cycle
add (u,v) to E

new

}

return Vand E,, which represent an MST



Chow-Liu: Example

* First, calculate empirical mutual information for each pair and
calculate edge weights.
* Graph is usually fully connected (using a non-complete graph for clarity)




Chow-Liu: Example (cont’d)

|




Chow-Liu: Example (cont’d)




Chow-Liu Algorithm

1. Finding tree structures is a ‘second order’ approximation
* First order: product of marginals P(Xy,... HP

*Second order: allow condltlonmg oh one varlable
P(Xi,...,X,) = P(X,) HP i| Xi1)

2. To assign directions in a Bayes’ network, pick a root and making
everything directed from root (may require domain expertise)

@ ©




Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas



