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Announcements	

• Lecture	recordings	for	last	4	lectures	out	
• (Small	issue	with	last	recording,	use	slides	from	the	webpage	to	
follow	along)	
	

• 	HW	5	due	next	Monday.	
	

 
  
 



Outline	

• Probability	Review	
• Basics,	joint	probability,	conditional	probabilities,	etc	

• Bayesian	Networks	
• Definition,	examples,	inference,	learning	

• Undirected	Graphical	Models	
• Definitions,	MRFs,	exponential	families	

• Structure	learning	
• Chow-Liu	Algorithm	
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Basics:	Joint	Distributions	

• Joint	distribution	of	2	random	variables	X	and	Y	

• Or	more	variables.	



• Given	a	joint	distribution	

• Compute	the	distribution	of	just	one	variable:	

• This	is	the	“marginal”	distribution.	

Basics:	Marginal	Probability	
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• Independence	for	a	set	of	events	

for	all	the	i1,…,ij	combinations	
	
• Why	useful?	Dramatically	reduces	the	complexity	
• Collapses	joint	into	product	of	marginals	

• Note	sometimes	we	have	only	pair-wise,	etc	
independence	

Independence	



• For	random	variables,	uncorrelated	means	

Note:	weaker	than	independence.	
• Independence	implies	uncorrelated	(easy	to	see)	
• If	X,Y	independent,	functions	are	not	correlated:	

	
	

Uncorrelatedness	



Conditional	Probability	

• When	we	know	something,	

• Conditional	independence		
Credit:	Devin	Soni	



Chain	Rule	

• Apply	repeatedly,		

• Note:	still	big!		
• If	some	conditional	independence,	can	factor!	
• Leads	to	probabilistic	graphical	models	(this	lecture)	



Law	of	Total	Probability	

• Partition	the	sample	space	into	disjoint	B1,	…,	Bk	
• Then,	



Bayesian	Inference	

• Bayes	rule:		

• Under	conditional	independence	



Random	Vectors	&	Covariance	

• Recall	variance:	
• For	a	random	vector		

• Note:	size	d	x	d.	All	variables	are	centered	

	

Diagonals:	Variance		Covariance	



Break & Quiz



Break	&	Quiz	
50%	of	emails	are	spam.	Software	has	been	applied	to	filter	
spam.	A	certain	brand	of	software	claims	that	it	can	detect	
99%	of	spam	emails,	and	the	probability	for	a	false	positive	(a	
non-spam	email	detected	as	spam)	is	5%.	Now	if	an	email	is	
detected	as	spam,	then	what	is	the	probability	that	it	is	in	fact	
a	nonspam	email?		
	
A.  5/104	
B.  95/100	
C.  1/100	
D.  1/2	
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Bayesian	Networks	Example	

• Consider	the	following	5	binary	random	variables:	
B	=	a	burglary	occurs	at	the	house	
E	=	an	earthquake	occurs	at	the	house	
A	=	the	alarm	goes	off	
J		=	John	calls	to	report	the	alarm	
M	=	Mary	calls	to	report	the	alarm	

• Suppose	the	Burglary	or	Earthquake	can	trigger	Alarm,	and	
Alarm	can	trigger	John’s	call	or	Mary’s	call	

• Now	we	want	to	answer	queries	like	what	is		P(B	|	M,	J)	?			

	



Bayesian	Networks	Example	

• Set	up	a	network	that	shows	how	random	variables	influence	
others:	
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Bayesian	Networks	Example	

• Set	up	a	network	that	shows	how	random	variables	influence	
others:	
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Bayesian	Networks	Example	

• Set	up	a	network	that	shows	how	random	variables	influence	
others:	
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Bayesian	Networks:	Definition	

• A	BN	consists	of	a	Directed	Acyclic	Graph	(DAG)	and	a	set	of	
conditional	probability	distributions	(CPD)	

• The	DAG:	
• each	node	denotes	a	random	variable	
• each	edge	from	X	to	Y		typically	represents	a	causal	link	from	X	to	Y
• formally:	each	variable	X	is	independent	of	its	non-descendants	given	its	
parents	

• Each	CPD:	represents	P(X | Parents(X) )	 B E 

A 

J M 



Bayesian	Networks:	Parameter	Counting	

•  Parameter	reduction:	standard	representation	of	the	joint	
distribution	for	Alarm	example	has	25	-1	=	31	parameters	

•  the	BN	representation	of	this	distribution	has	10	parameters	
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Inference	in	Bayesian	Networks	

Given:	values	for	some	variables	in	the	network	(evidence),	
and	a	set	of	query	variables	
Do:	compute	the	posterior	distribution	over	the	query	
variables	

• Variables	that	are	neither	evidence	variables	nor	query	
variables	are	hidden	variables	

• The	BN	representation	is	flexible	enough	that	any	set	can	be	
the	evidence	variables	and	any	set	can	be	the	query	variables	

	



Inference	by	Enumeration	

• Let	a	denote	A=true,	and	¬a	denote	A=false
• Suppose	we’re	given	the	query:	P(b | j, m)
					“probability	the	house	is	being	burglarized	given	that	John	
and	Mary	both	called”	

• From	the	graph	structure	we	can	first	compute:	
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Inference	by	Enumeration	
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Inference	by	Enumeration	

• Next	do	equivalent	calculation	for	P(¬b,  j, m)
and	determine	P(b | j, m)

So:	exact	method,	but	can	be	intractably	hard.	
• Efficient	for	small	BNs	
• Approximate	inference	sometimes	available	
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Learning	Bayes	Nets	

• Problem	1	(parameter	learning):	given	a	set	of	training	
instances,	the	graph	structure	of	a	BN	

• Goal:	infer	the	parameters	of	the	CPDs	
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Learning	Bayes	Nets	

• Problem	2	(structure	learning):	given	a	set	of	training	
instances

• Goal:	infer	the	graph	structure	(and	then	possibly	also	the	
parameters	of	the	CPDs)	
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Parameter	Learning:	MLE	

• Goal:	infer	the	parameters	of	the	CPDs	
• As	usual,	can	use	MLE	

independent	parameter	learning	
problem	for	each	CPD	
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Parameter	Learning:	MLE	Example	

• Goal:	infer	the	parameters	of	the	CPDs	
• Consider	estimating	the	CPD	parameters	for	B	and	J	in	the	
alarm	network	given	the	following	data	set	
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Parameter	Learning:	MLE	Example	

• Goal:	infer	the	parameters	of	the	CPDs	
• Consider	estimating	the	CPD	parameters	for	B	and	J	in	the	
alarm	network	given	the	following	data	set	
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Parameter	Learning:	Laplace	Smoothing	

• Instead	of	estimating	parameters	strictly	from	the	data,	we	
could	start	with	some	prior	belief	for	each	

• For	example,	we	could	use	Laplace	estimates	

where	nv	represents	the	number	of	occurrences	of	value	v
• Recall:	we	did	this	for	Naïve	Bayes	
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Break & Quiz



Q2-1:	Consider	a	case	with	8	binary	random	variables,	how	many	
parameters	does	a	BN	with	the	following	graph	structure	have? 

1.  12 
2.  14 
3.  16 
4.  26 



Q2-1:	Consider	a	case	with	8	binary	random	variables,	how	many	
parameters	does	a	BN	with	the	following	graph	structure	have?	

1.  12 
2.  14 
3.  16 
4.  26 

So	we	have	16	parameters	in	total.	

1	 1	

4	

2	 2	

2	2	2	
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Undirected	Graphical	Models	

• Still	want	to	encode	conditional	independence,	but	not	in	an	
causal	way	(ie,	no	parents,	direction)
• Why?	Allows	for	modeling	other	distributions	that	Bayes	nets	can’t,	
allows	for	other	algorithms	

• Graph	directly	encodes	a	type	of	conditional	
independence.	If	nodes	i,j	are	not	neighbors,		



Markov	Random	Fields	

• A	particularly	popular	kind	of	undirected	model.	As	above,	
can	describe	in	terms	of:	
• 1.	Conditional	independence:	

• 2.	Factorization.	(Clique:	maximal	fully-connected	subgraphs)	
• Bayes	nets:	factorize	over	CPTs	with	parents;	MRFs:	factorize	over	cliques	

Potential	functions	Partition	function	



Ising	Models	

• Ising	models:	a	particular	kind	of	MRF	usually	written	in	
exponential	form	
• Popular	in	statistical	physics	
• Idea:	pairwise	interactions	(biggest	cliques	of	size	2)	

• Challenges:	
• Compute	partition	function	
• Perform	inference/marginalization	

	
	

Khudier	and	Fawaz	
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Structure	Learning	

• Generally	a	hard	problem,	many	approaches.		
• Exponentially	(or	worse)	many	structures	in	#	variables	
• Can	either	use	heuristics	or	restrict	to	some	tractable	subset	of	
networks.	Ex:	trees		

• Chow-Liu	Algorithm	
• Learns	a	BN	with	a	tree	structure	that	maximizes	the	likelihood	of	
the	training	data	

1.  Compute	weight	I(Xi, Xj) of	each	possible	edge	(Xi, Xj)
2.  Find	maximum	weight	spanning	tree	(MST)	



Chow-Liu:	Computing	weights	

• 	Use	mutual	information	to	calculate	edge	weights	
	
	
	
	
	
	

• The	probabilities	are	calculated	empirically	using	data	
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Chow-Liu:	Finding	MST	

• 	Many	algorithms	for	calculating	MST	(e.g	Kruskal’s,	Prim’s)	
	

• Kruskal’s	algorithm	
	
	
	
	
	

given:	graph	with	vertices	V	and	edges	E
	
Enew  ← { } 
for	each	(u, v) in E ordered by weight (from high to low) 
{	
	remove (u, v) from E 
	if	adding	(u, v) to	Enew does not create a cycle	
	 	add	(u, v) to		Enew

}	
return	V and Enew which represent an MST 
		 		



Chow-Liu:	Example	
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• 	First,	calculate	empirical	mutual	information	for	each	pair	and	
calculate	edge	weights.	
• Graph	is	usually	fully	connected	(using	a	non-complete	graph	for	clarity)	
	

	



Chow-Liu:	Example	(cont’d)	
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Chow-Liu:	Example	(cont’d)	
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Chow-Liu	Algorithm	

1.  Finding	tree	structures	is	a	‘second	order’	approximation	
• First	order:	product	of	marginals	
• Second	order:	allow	conditioning	on	one	variable	
	

2.  To	assign	directions	in	a	Bayes’	network,	pick	a	root	and	making	
everything	directed	from	root	(may	require	domain	expertise)	
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Thanks Everyone!
Some	of	the	slides	in	these	lectures	have	been	adapted/borrowed	from	materials	developed	by	Mark	Craven,	
David	Page,	Jude	Shavlik,	Tom	Mitchell,	Nina	Balcan,	Elad	Hazan,	Tom	Dietterich,	Pedro	Domingos,	Jerry	Zhu,	
Yingyu	Liang,	Volodymyr	Kuleshov,	Fei-Fei	Li,	Justin	Johnson,	Serena	Yeung,	Pieter	Abbeel,	Peter	Chen,	Jonathan	
Ho,	Aravind	Srinivas	


