

CS 760: Machine Learning Graphical Models

Kirthi Kandasamy
University of Wisconsin-Madison
March 27, 29, 2023

Announcements

-Lecture recordings for last 4 lectures out
-(Small issue with last recording, use slides from the webpage to follow along)

- HW 5 due next Monday.

Outline

-Probability Review

- Basics, joint probability, conditional probabilities, etc
-Bayesian Networks
-Definition, examples, inference, learning
-Undirected Graphical Models
-Definitions, MRFs, exponential families
-Structure learning
-Chow-Liu Algorithm

Outline

-Probability Review

- Basics, joint probability, conditional probabilities, etc
-Bayesian Networks
-Definition, examples, inference, learning
-Undirected Graphical Models
- Definitions, MRFs, exponential families
-Structure learning
-Chow-Liu Algorithm

Basics: Joint Distributions

- Joint distribution of 2 random variables X and Y

$$
P(X=a, Y=b)
$$

-Or more variables.

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}\right)
$$

Basics: Marginal Probability

- Given a joint distribution

$$
P(X=a, Y=b)
$$

-Compute the distribution of just one variable:

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

-This is the "marginal" distribution.

Basics: Marginal Probability

$$
P(X=a)=\sum_{b} P(X=a, Y=b)
$$

	Sunny	Cloudy	Rainy
hot	$150 / 365$	$40 / 365$	$5 / 365$
cold	$50 / 365$	$60 / 365$	$60 / 365$

$$
[P(\text { hot }), P(\text { cold })]=\left[\frac{195}{365}, \frac{170}{365}\right]
$$

Independence

- Independence for a set of events A_{1}, \ldots, A_{k}

$$
P\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{j}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{j}}\right)
$$

for all the $\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{j}}$ combinations
-Why useful? Dramatically reduces the complexity
-Collapses joint into product of marginals

- Note sometimes we have only pair-wise, etc independence

Uncorrelatedness

-For random variables, uncorrelated means

$$
E[X Y]=E[X] E[Y]
$$

Note: weaker than independence.

- Independence implies uncorrelated (easy to see)
- If X, Y independent, functions are not correlated:

$$
E[f(X) f(Y)]=E[f(X)] E[f(Y)]
$$

Conditional Probability

-When we know something,

$$
P(X=a \mid Y=b)=\frac{P(X=a, Y=b)}{P(Y=b)}
$$

-Conditional independence

Credit: Devin Soni

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

Chain Rule

- Apply repeatedly,

$$
\begin{aligned}
& P\left(A_{1}, A_{2}, \ldots, A_{n}\right) \\
& =P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2}, A_{1}\right) \ldots P\left(A_{n} \mid A_{n-1}, \ldots, A_{1}\right)
\end{aligned}
$$

- Note: still big!
- If some conditional independence, can factor!
- Leads to probabilistic graphical models (this lecture)

Law of Total Probability

-Partition the sample space into disjoint $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}}$
-Then,

$$
P(A)=\sum_{i} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Bayesian Inference

-Bayes rule:

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1}, \ldots, E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

- Under conditional independence

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \cdots, P\left(E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

Random Vectors \& Covariance

-Recall variance:

$$
\mathbb{E}\left[(X-E[X])^{2}\right]
$$

-For a random vector

- Note: size $d x$ d. All variables are centered

Break \& Quiz

Break \& Quiz

50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?
A. $5 / 104$
B. $95 / 100$
C. $1 / 100$
D. $1 / 2$

Break \& Quiz

50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?
A. 5/104
B. $95 / 100$
C. $1 / 100$
D. $1 / 2$

Outline

-Probability Review

- Basics, joint probability, conditional probabilities, etc
-Bayesian Networks
-Definition, examples, inference, learning
-Undirected Graphical Models
- Definitions, MRFs, exponential families
-Structure learning
- Chow-Liu Algorithm

Bayesian Networks Example

- Consider the following 5 binary random variables:
$B=$ a burglary occurs at the house
$E=$ an earthquake occurs at the house
$A=$ the alarm goes off
$J=$ John calls to report the alarm
$M=$ Mary calls to report the alarm
- Suppose the Burglary or Earthquake can trigger Alarm, and Alarm can trigger John's call or Mary's call
- Now we want to answer queries like what is $P(B \mid M, J)$?

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

$P(B)$	
t	f
0.001	0.999

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

$P(B)$	
t	f
0.001	0.999

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

$P(B)$	
t	f
0.001	0.999

A	$P(J / A)$	
t	t	f
f	0.9	0.1
	0.05	0.95

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks: Definition

- A BN consists of a Directed Acyclic Graph (DAG) and a set of conditional probability distributions (CPD)

- The DAG:

- each node denotes a random variable
- each edge from X to Y typically represents a causal link from X to Y
- formally: each variable X is independent of its non-descendants given its parents
- Each CPD: represents $P(X \mid$ Parents $(X))$

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{v \in V} p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

Bayesian Networks: Parameter Counting

- Parameter reduction: standard representation of the joint distribution for Alarm example has $2^{5}-1=31$ parameters
- the BN representation of this distribution has 10 parameters

Inference in Bayesian Networks

Given: values for some variables in the network (evidence), and a set of query variables
Do: compute the posterior distribution over the query variables

- Variables that are neither evidence variables nor query variables are hidden variables
-The BN representation is flexible enough that any set can be the evidence variables and any set can be the query variables

Inference by Enumeration

- Let a denote $\boldsymbol{A}=$ true, and $\neg a$ denote $\boldsymbol{A}=$ false
- Suppose we're given the query: $P(b \mid j, m)$
"probability the house is being burglarized given that John and Mary both called"
-From the graph structure we can first compute:

Inference by Enumeration

$$
\begin{aligned}
P(b, j, m) & =\sum_{e,\urcorner e a, \sim a} P(b) P(E) P(A \mid b, E) P(j \mid A) P(m \mid A) \\
& =P(b) \sum_{e, \neg e a, \neg a} \sum P(E) P(A \mid b, E) P(j \mid A) P(m \mid A)
\end{aligned}
$$

Inference by Enumeration

- Next do equivalent calculation for $P(\neg b, j, m)$ and determine $P(b \mid j, m)$

$$
P(b \mid j, m)=\frac{P(b, j, m)}{P(j, m)}=\frac{P(b, j, m)}{P(b, j, m)+P(\neg b, j, m)}
$$

So: exact method, but can be intractably hard.

- Efficient for small BNs
- Approximate inference sometimes available

Learning Bayes Nets

- Problem 1 (parameter learning): given a set of training instances, the graph structure of a BN

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	t	f	t
		\ldots		

-Goal: infer the parameters of the CPDs

Learning Bayes Nets

- Problem 2 (structure learning): given a set of training instances

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	t	f	t
		\ldots		

- Goal: infer the graph structure (and then possibly also the parameters of the CPDs)

Parameter Learning: MLE

- Goal: infer the parameters of the CPDs
-As usual, can use MLE

$$
\begin{aligned}
L(\theta: D, G)=P(D \mid G, \theta) & =\prod_{d \in D} P\left(x_{1}^{(d)}, x_{2}^{(d)}, \ldots, x_{n}^{(d)}\right) \\
& =\prod_{d \in D} \prod_{i} P\left(x_{i}^{(d)} \mid \operatorname{Parents}\left(x_{i}^{(d)}\right)\right) \\
& =\prod_{i}(\underbrace{}_{\substack{\text { independent parameter learning } \\
\text { problem for each CPD }}} P\left(x_{i \in D}^{(d)} \mid \operatorname{Parents}\left(x_{i}^{(d)}\right)\right))
\end{aligned}
$$

Parameter Learning: MLE Example

- Goal: infer the parameters of the CPDs
- Consider estimating the CPD parameters for B and J in the alarm network given the following data set

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	f	t	t
t	f	f	f	t
f	f	t	t	f
f	f	t	f	t
f	f	t	t	t
f	f	t	t	t

$$
\begin{aligned}
& P(b)=\frac{1}{8}=0.125 \\
& P(\neg b)=\frac{7}{8}=0.875 \\
& P(j \mid a)=\frac{3}{4}=0.75 \\
& P(\neg j \mid a)=\frac{1}{4}=0.25 \\
& P(j \mid \neg a)=\frac{2}{4}=0.5 \\
& P(\neg j \mid \neg a)=\frac{2}{4}=0.5
\end{aligned}
$$

Parameter Learning: MLE Example

- Goal: infer the parameters of the CPDs
- Consider estimating the CPD parameters for B and J in the alarm network given the following data set

$$
\begin{aligned}
& \left\{\begin{array}{l}
P(b)=\frac{0}{8}=0 \\
P(\neg b)=\frac{8}{8}=1
\end{array}\right. \\
& \text { do we really want to } \\
& \text { set this to 0? }
\end{aligned}
$$

Parameter Learning: Laplace Smoothing

- Instead of estimating parameters strictly from the data, we could start with some prior belief for each
- For example, we could use Laplace estimates

$$
P(X=x)=\frac{n_{x}+1}{\sum_{v \in \operatorname{Vatues}(X)}\left(n_{v}+1\right)} \text { pseudocounts }
$$

where n_{v} represents the number of occurrences of value v
-Recall: we did this for Naïve Bayes

Break \& Quiz

Q2-1: Consider a case with 8 binary random variables, how many parameters does a BN with the following graph structure have?

1. 12
2. 14
3. 16
4. 26

Q2-1: Consider a case with 8 binary random variables, how many parameters does a BN with the following graph structure have?

1. 12
2. 14
3. 16
4. 26

Outline

-Probability Review

- Basics, joint probability, conditional probabilities, etc
-Bayesian Networks
- Definition, examples, inference, learning
- Undirected Graphical Models
-Definitions, MRFs, exponential families
-Structure learning
- Chow-Liu Algorithm

Undirected Graphical Models

- Still want to encode conditional independence, but not in an causal way (ie, no parents, direction)
-Why? Allows for modeling other distributions that Bayes nets can't, allows for other algorithms
- Graph directly encodes a type of conditional independence. If nodes i,j are not neighbors,

$$
X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}}
$$

Markov Random Fields

- A particularly popular kind of undirected model. As above, can describe in terms of:
-1. Conditional independence:

$$
X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}}
$$

-2. Factorization. (Clique: maximal fully-connected subgraphs)

- Bayes nets: factorize over CPTs with parents; MRFs: factorize over cliques

Using Models

- Ising models: a particular kind of MRF usually written in exponential form
- Popular in statistical physics
- Idea: pairwise interactions (biggest cliques of size 2)

$$
P\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{Z} \exp \left(\sum_{(j) \in F} \theta_{i j} x_{i} x_{j}\right)
$$

$$
(i, j) \in E
$$

-Challenges:

Outline

-Probability Review

- Basics, joint probability, conditional probabilities, etc
- Bayesian Networks
-Definition, examples, inference, learning
-Undirected Graphical Models
- Definitions, MRFs, exponential families
-Structure learning
-Chow-Liu Algorithm

Structure Learning

- Generally a hard problem, many approaches.
- Exponentially (or worse) many structures in \# variables
- Can either use heuristics or restrict to some tractable subset of networks. Ex: trees
- Chow-Liu Algorithm
- Learns a BN with a tree structure that maximizes the likelihood of the training data

1. Compute weight $I\left(X_{i}, X_{j}\right)$ of each possible edge $\left(X_{i}, X_{j}\right)$
2. Find maximum weight spanning tree (MST)

Chow-Liu: Computing weights

- Use mutual information to calculate edge weights

$$
I(X, Y)=\sum_{x \in \operatorname{values}(X)} \sum_{y \in \operatorname{vantus}(Y)} P(x, y) \log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

- The probabilities are calculated empirically using data

Chow-Liu: Finding MST

- Many algorithms for calculating MST (e.g Kruskal's, Prim's)
- Kruskal's algorithm

```
given: graph with vertices }V\mathrm{ and edges }
E new
for each (u,v) in E ordered by weight (from high to low)
{
    remove (u,v) from E
    if adding (u,v) to E Enew
        add (u,v) to E Enew
}
return V and E Enew which represent an MST
```


Chow-Liu: Example

- First, calculate empirical mutual information for each pair and calculate edge weights.
- Graph is usually fully connected (using a non-complete graph for clarity)

Chow-Liu: Example (cont'd)

iii.

Chow-Liu: Example (cont'd)

Chow-Liu Algorithm

1. Finding tree structures is a 'second order' approximation

- First order: product of marginals

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}\right)
$$

- Second order: allow conditioning on one variable

$$
P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid X_{i-1}\right)
$$

2. To assign directions in a Bayes' network, pick a root and making everything directed from root (may require domain expertise)

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas

