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Bayesian Networks Example

*Consider the following 5 binary random variables:

B = a burglary occurs at the house

E = an earthquake occurs at the house
A = the alarm goes off

J =John calls to report the alarm

M = Mary calls to report the alarm

*Suppose the Burglary or Earthquake can trigger Alarm, and
Alarm can trigger John’s call or Mary’s call

*Now we want to answer queries like whatis P(B | M, J) ?



Bayesian Networks Example

*Set up a network that shows how random variables influence

others:




Bayesian Networks Example

*Set up a network that shows how random variables influence

others:
P(B) Burglary Earthquake PLE)
t f
t f
0.001  0.999 0.001  0.999
P(A|BE)
B E t f
t t 095  0.05
t f 0.94  0.06
f t 0.29 0.71
f f 0.001  0.999
P(J]A) b(M | A
! J A t f
09 01 t 0.7 0.3
005 0% f 0.01 0.99




Inference by Enumeration

*Let a denote A=true, and —a denote A=false
*Suppose we're given the query: P(b | j, m)
“probability the house is being burglarized given that John
and Mary both called”

*From the graph structure we can first compute:
B &) P, j.m) =Y S P()P(E)P(A|b,E)P(j| A)P(m | A)
0 sum over possible
values for Fand A
o @ variables (e, —e, a, —a)



Parameter Learning: MLE

*Goal: infer the parameters of the CPDs
* As usual, can use MLE

L(6:D,G)=P(D|G,0) = Hp(xfd>,x§d>,...,x§ﬁ>)

deD

— D n P(x'” | Parents(x\")))
eD i

- 1_[ (D P(x? | Parents(x\")))

\ )
|

independent parameter learning
problem for each CPD



Parameter Learning: MLE Example

*Goal: infer the parameters of the CPDs

*Consider estimating the CPD parameters for B and J in the
alarm network given the following data set

P(b) = % = 0.125

B E A J M :
£ £ £ t £ P(—-b)=§=0.875
(4) f r f £ £ . 3,
£ £ £ { t (jlay=7=075
OXO oot bt pla) =2 =025
f f t t f 4
f f t f t P(j|—-a)=g=0.5
£ £ { { ¢ 42
f £ I I I P(—-j|—-a)=z=0.5




Break & Quiz



Quiz

Can the Naive Bayes’ model be represented as a Bayesian
network?

If no, explain why. If yes, draw the network.

Ans: Yes
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Undirected Graphical Models

*Still want to encode conditional independence, but not in a
causal way (ie, no parents, direction)

* Why? Allows for modeling other distributions that Bayes nets can't,
allows for other algorithms

*Graph directly encodes a type of conditional
independence. If nodes i,j are not neighbors,

X L X1 X i,




Markov Random Fields

* A particularly popular kind of undirected model. As above,
can describe in terms of:

* 1. Conditional independence: Xz 1 Xj ‘XV\{"L 7}

e 2. Factorization. (Clique: maximal fully-connected subgraphs)
* Bayes nets: factorize over CPTs with parents; MRFs: factorize over cliques

P(X) :% 1] cbc(XC)

/ C'ecliques(G /

Partition function Potential functions




Ising Models

*|sing models: a particular kind of MRF usually written in
exponential form
* Popular in statistical physics
* ldea: pairwise interactions (biggest cliques of size 2)

1
P(x1,...,2q) = = exp( Oijriry)
Z (”z); zu P ® @@@6

’Cha”engeS: Khudier and Fawaz @ _____ @ @ @ C

* Compute partition function

* Perform inference/marginalization @ """ @ @ @ Q
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Structure Learning

*Generally a hard problem, many approaches.
* Exponentially (or worse) many structures in # variables

e Can either use heuristics or restrict to some tractable subset of
networks. Ex: trees

*Chow-Liu Algorithm

e Learns a BN with a tree structure that maximizes the likelihood of
the training data

1. Compute weight I(X;, X;) of each possible edge (X, X)
2. Find maximum weight spanning tree (MST)



Chow-Liu: Computing weights
* Use mutual information to calculate edge weights

P(x,
P(x, y)log, — %))

I(X,Y) = 2
xEvalues(X) y&values(Y) P(X)P(y)

*The probabilities are calculated empirically using data



Chow-Liu: Finding MST
* Many algorithms for calculating MST (e.g Kruskal’s, Prim’s)

*Kruskal’s algorithm

given: graph with vertices V and edges E

Epew <13
for each (u, v) in E ordered by weight (from high to low)
{

remove (u,v) from E

if adding (u, v) to E,,,, does not create a cycle
add (u,v) to E

new

}

return Vand E,, which represent an MST



Chow-Liu: Example

* First, calculate empirical mutual information for each pair and
calculate edge weights.
* Graph is usually fully connected (using a non-complete graph for clarity)




Chow-Liu: Example (cont’d)

|




Chow-Liu: Example (cont’d)




Chow-Liu Algorithm

1. Finding tree structures is a ‘second order’ approximation
* First order: product of marginals P(Xy,... HP

*Second order: allow condltlonmg oh one varlable
P(Xi,...,X,) = P(X,) HP i| Xi1)

2. To assign directions in a Bayes’ network, pick a root and making
everything directed from root (may require domain expertise)

@ ©
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D-separation in Bayesian Networks

hich of the following are true?

(B) (&) L)L M
CJLM | A

. W
1
2

O 3. BLJ
4
5
6

CBLJ | A
@O W . BULE

. BLE | A




D-separation in Bayesian Networks

*Still want to encode conditional independence, but not in 3,

OXO * Which of the following are true?
1. J 1L M (False)
(4 )

. JALM | A (True)
(D W

B 1J (False)
BiLJ | A (True)
B1E (True)
BILE | A(False)

O U AW




D-separation in Bayesian Networks

*D-separation: A formal way to answer questions of
conditional independence:

“Eg.JLM |A JILE|B M etc OXO
*Triples: Any 3 connected vertices (4
 We say that a triple is active if

Y - OJO

* (Causal chain): X=>Y=> Z (Y is unobserved)
*(Commoncause): X €Y =>Z (Yisunobserved)
* (Common effect): X =>» Y € Z (Y or any descendent of Y is observed)

* An (undirected) path is active if all of it’s triples are active.



D-separation in Bayesian Networks

*Goal: Answer queries of the form: A1 B | {C, D, ...}

*D-separation Algorithm:
 For all (undirected) paths from Ato B
* Check if path is active (i.e all triples are active)
*Return “A 1L B | {C, D, ...} is not guaranteed”
*|f all paths are inactive:
*Return “A 1L B | {C, D, ...} is true”



D-separation Examples

* Are the following conditional
independences guaranteed?

1. B1 M
BILM|A,
ELB
ELB|A,
ELB]|A,
ELB | J
A LA,

A LA, | E
A, LA, | B
10 J1 M

11. ) 1L M | A,

© 0 NDUIAWN



D-separation Examples

* Are the following conditional
independences guaranteed?

1. B1L M (False)
BLM|A; (True)
ELB (True)
ElLB]|A; (False)
ELB]|A, (True)
E1LB | J(False)
A, L A, (False)

A, LA, | E (False)
A 1 A; | B (True)
10 J1L M (False)
11.J L M | A; (True)

ORORO
L @

© 0 NOUTAWN



D-separation in Bayesian Networks

*Goal: Answer queries of the form: A1 B | {C, D, ...}

*D-separation Algorithm:
 For all (undirected) paths from Ato B
* Check if path is active (i.e all triples are active)
*Return “A 1L B | {C, D, ...} is not guaranteed”
*|f all paths are inactive:
*Return “A 1L B | {C, D, ...} is true”
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Quiz

True or False:

Bayesian networks can be used for unsupervised
learning only. They cannot be used for supervised
learning.

Ans: False



Quiz

You are given data of the form {B, E, J,, M.}. That is, you observe
all variables except A.

1. Can you still learn the parameters via MLE?
2. If yes, what algorithm will you use?

B E
f f
f f
t f
Ans: ) )
1. Yes f t
2. EM £ f
t t
f f
f f
f f

B S L N T S S ST B B N

*—hﬂ’—bt—r"—he—f*—bt—rt—r'—b\g




Example: EM for parameter learning

suppose we’re given the following initial BN and training set

B

P(B) P(E) f

0.1 0.2 ;
G ¢ :
t t 0.9 f
t f 0.6 o d
f t 0.3 f
f f 0.2 t
G Qo f

A P()) A PM) £

t 0.9 t 0.8 f

e e T e T e = M e

R S T T L. T S, . S N B N

= e Hh =+ mh o+ mh =+ mh |

Q—F’—b’—bt—rt—r‘?—bc—rc—b’—b’—ba




E-step

P(a|-b,—-e,~j,~m)

P(-a|-b,—e,~j,~m)

A

P(B) P(E)
0.1 0.2
B &
B E | P
t t 0.9
t f 0.6 o
f t 0.3
f f 0.2
@
A PJ) A PM)
t 0.9 t 0.8
f 0.2 f 0.1

t: 0.0069
f: 0.9931

t:0.2
£:0.8

t:0.98
f: 0.02

t: 0.2
f: 0.8

t: 0.3
f: 0.7

t:0.2
f: 0.8

t: 0.997
f: 0.003

t: 0.0069
f: 0.9931

t:0.2
f: 0.8

t: 0.2
f: 0.8




Example: E-step

P(B)

P(E)

0.1

0.2

B E P(A)
t t 0.9
t f 0.6
f t 0.3
f f 0.2

P(J)

0.9
0.2

P(M)

0.8
0.1

P(a|-b,—e,—j,—~m)
P(=b,-e,a,—j,—~m)

- P(=b,-e,a,—j,~m)+ P(=b,—-e,—-a,—j,—~m)
0.9%x0.8x0.2x0.1x0.2

B 09%x0.8x0.2x0.1x0.24+0.9%x0.8x0.8x0.8x0.9
3 0.00288 — 0.0069

©0.4176

P(a|-b,-e, j,~m)
P(=b,-e,a, j,—~m)
B P(=b,-e,a, j,~m)+ P(=b,—e,—a, j,—~m)
0.9%x0.8x0.2x0.9x0.2

- 0.9%x0.8x0.2x0.9%x0.2+0.9%x0.8x0.8x0.2x0.9
_ 0.02592 _02

©0.1296




M-step

re-estimate probabilities P(g1h.e) E#(anbne) A J M
using expected counts (a]b,e) = E#(b A e) t: 0.0069
f: 0.9931 £ £
0.997
P(al|b,e) =— £:0.2
(alb.e) 1 £:0.8 t £
0.98 .
P(a|b.e) = £:0.98
(al ) 1 f: 0.02 t t
0.3 t: 0.2
P(Cl|—'b,€)=T f: 0.8 £ t
0.0069 +0.2 +0.2+0.2 +0.0069 + 0.2 + 0.2 € 0.3
P(a|~b,~e) = : ro7 ¢ 1
t:0.2
f t
®» @ Lt
( ¢ | 0997 L0997 ¢
f: 0.003
t f 0.98 0
t: 0.00
o f t 0.3 £09931 L f
f f 0.145 0.2
f: 0.8 t f
re-estimate probabilities for '
o @ P(J1A)and P(M | A) in same way t0.2 f t

f: 0.8




M-step

re-estimate probabilities , E#(a A j)
using expected counts P(jla) =
E#(a)
P(jla)=
0.2+0.98+0.3+0.997+0.2

A

0.0069+0.2+0.98+0.2+0.3+0.2+0.997+0.0069 +0.2 + 0.2

P(jl-a)=
0.8+0.02+0.7+0.003+0.8

0.9931+0.8+0.02+0.8+0.7+0.8+0.003+0.9931+0.8+0.8

t: 0.0069
f: 0.9931

t:0.2
£:0.8

t:0.98
f: 0.02

t: 0.2
f: 0.8

t: 0.3
f: 0.7

t:0.2
f: 0.8

t: 0.997
f: 0.003

t: 0.0069
f: 0.9931

t:0.2
f: 0.8

t: 0.2
f: 0.8




Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,

Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan
Ho, Aravind Srinivas, and Fred Sala



