

CS 760: Machine Learning Graphical Models - II

Kirthi Kandasamy

University of Wisconsin-Madison
March 29, 2023

Outline

-Bayesian Networks Review
-Definition, examples, inference, learning
-Undirected Graphical Models

- Definitions, MRFs, exponential families
-Structure learning
-Chow-Liu Algorithm
-D-separation

Outline

-Bayesian Networks Review
-Definition, examples, inference, learning
-Undirected Graphical Models

- Definitions, MRFs, exponential families
-Structure learning
-Chow-Liu Algorithm
-D-separation

Bayesian Networks Example

- Consider the following 5 binary random variables:
$B=$ a burglary occurs at the house
$E=$ an earthquake occurs at the house
$A=$ the alarm goes off
$J=$ John calls to report the alarm
$M=$ Mary calls to report the alarm
- Suppose the Burglary or Earthquake can trigger Alarm, and Alarm can trigger John's call or Mary's call
- Now we want to answer queries like what is $P(B \mid M, J)$?

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Inference by Enumeration

- Let a denote $\boldsymbol{A}=$ true, and $\neg a$ denote $\boldsymbol{A}=$ false
- Suppose we're given the query: $P(b \mid j, m)$
"probability the house is being burglarized given that John and Mary both called"
-From the graph structure we can first compute:

Parameter Learning: MLE

- Goal: infer the parameters of the CPDs
-As usual, can use MLE

$$
\begin{aligned}
L(\theta: D, G)=P(D \mid G, \theta) & =\prod_{d \in D} P\left(x_{1}^{(d)}, x_{2}^{(d)}, \ldots, x_{n}^{(d)}\right) \\
& =\prod_{d \in D} \prod_{i} P\left(x_{i}^{(d)} \mid \operatorname{Parents}\left(x_{i}^{(d)}\right)\right) \\
& =\prod_{i}(\underbrace{}_{\substack{\text { independent parameter learning } \\
\text { problem for each CPD }}} P\left(x_{i \in D}^{(d)} \mid \operatorname{Parents}\left(x_{i}^{(d)}\right)\right))
\end{aligned}
$$

Parameter Learning: MLE Example

- Goal: infer the parameters of the CPDs
- Consider estimating the CPD parameters for B and J in the alarm network given the following data set

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	f	t	t
t	f	f	f	t
f	f	t	t	f
f	f	t	f	t
f	f	t	t	t
f	f	t	t	t

$$
\begin{aligned}
& P(b)=\frac{1}{8}=0.125 \\
& P(\neg b)=\frac{7}{8}=0.875 \\
& P(j \mid a)=\frac{3}{4}=0.75 \\
& P(\neg j \mid a)=\frac{1}{4}=0.25 \\
& P(j \mid \neg a)=\frac{2}{4}=0.5 \\
& P(\neg j \mid \neg a)=\frac{2}{4}=0.5
\end{aligned}
$$

Break \& Quiz

Quiz

Can the Naïve Bayes' model be represented as a Bayesian network?
If no, explain why. If yes, draw the network.

Ans: Yes

Outline

-Bayesian Networks Review
-Definition, examples, inference, learning
-Undirected Graphical Models

- Definitions, MRFs, exponential families
-Structure learning
-Chow-Liu Algorithm
-D-separation

Undirected Graphical Models

- Still want to encode conditional independence, but not in a causal way (ie, no parents, direction)
-Why? Allows for modeling other distributions that Bayes nets can't, allows for other algorithms
- Graph directly encodes a type of conditional independence. If nodes i,j are not neighbors,

$$
X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}}
$$

Markov Random Fields

- A particularly popular kind of undirected model. As above, can describe in terms of:
-1. Conditional independence:

$$
X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}}
$$

-2. Factorization. (Clique: maximal fully-connected subgraphs)

- Bayes nets: factorize over CPTs with parents; MRFs: factorize over cliques

Using Models

- Ising models: a particular kind of MRF usually written in exponential form
- Popular in statistical physics
- Idea: pairwise interactions (biggest cliques of size 2)

$$
P\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{Z} \exp \left(\sum_{(j) \in F} \theta_{i j} x_{i} x_{j}\right)
$$

$$
(i, j) \in E
$$

-Challenges:

Outline

-Bayesian Networks Review
-Definition, examples, inference, learning
-Undirected Graphical Models
-Definitions, MRFs, exponential families
-Structure learning

- Chow-Liu Algorithm
-D-separation

Structure Learning

- Generally a hard problem, many approaches.
- Exponentially (or worse) many structures in \# variables
- Can either use heuristics or restrict to some tractable subset of networks. Ex: trees
- Chow-Liu Algorithm
- Learns a BN with a tree structure that maximizes the likelihood of the training data

1. Compute weight $I\left(X_{i}, X_{j}\right)$ of each possible edge $\left(X_{i}, X_{j}\right)$
2. Find maximum weight spanning tree (MST)

Chow-Liu: Computing weights

- Use mutual information to calculate edge weights

$$
I(X, Y)=\sum_{x \in \operatorname{values}(X)} \sum_{y \in \operatorname{vantus}(Y)} P(x, y) \log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

- The probabilities are calculated empirically using data

Chow-Liu: Finding MST

- Many algorithms for calculating MST (e.g Kruskal's, Prim's)
- Kruskal's algorithm

```
given: graph with vertices }V\mathrm{ and edges }
E new
for each (u,v) in E ordered by weight (from high to low)
{
    remove (u,v) from E
    if adding (u,v) to E E new
        add (u,v) to E Enew
}
return V and E Enew which represent an MST
```


Chow-Liu: Example

- First, calculate empirical mutual information for each pair and calculate edge weights.
- Graph is usually fully connected (using a non-complete graph for clarity)

Chow-Liu: Example (cont'd)

iii.

Chow-Liu: Example (cont'd)

Chow-Liu Algorithm

1. Finding tree structures is a 'second order' approximation

- First order: product of marginals

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}\right)
$$

- Second order: allow conditioning on one variable

$$
P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid X_{i-1}\right)
$$

2. To assign directions in a Bayes' network, pick a root and making everything directed from root (may require domain expertise)

Outline

-Bayesian Networks Review
-Definition, examples, inference, learning
-Undirected Graphical Models
-Definitions, MRFs, exponential families
-Structure learning
-Chow-Liu Algorithm
-D-separation

D-separation in Bayesian Networks

- Which of the following are true?

1. $\mathrm{J} \Perp \mathrm{M}$
2. $J \Perp M \mid A$
3. $\mathrm{B} \Perp \mathrm{J}$
4. $B \Perp J \mid A$
5. $B \Perp E$
6. $B \Perp E \mid A$

D-separation in Bayesian Networks

- Still want to encode conditional independence, but not in a,

- Which of the following are true?

1. $J \Perp M$ (False)
2. $J \Perp M \mid A(T r u e)$
3. $B \Perp J$ (False)
4. $B \Perp J \mid A(T r u e)$
5. $B \Perp E$ (True)
6. $B \Perp E \mid A(F a l s e)$

D-separation in Bayesian Networks

-D-separation: A formal way to answer questions of conditional independence:

$$
\bullet E . g . J \Perp M|A, \quad J \Perp E| B, M \text { etc. }
$$

-Triples: Any 3 connected vertices

- We say that a triple is active if
\bullet (Causal chain): $X \rightarrow Y \rightarrow Z \quad$ (Y is unobserved)

\bullet-(Common cause): $X \leftarrow Y \rightarrow Z \quad$ (Y is unobserved)
-(Common effect): $\mathrm{X} \rightarrow \mathrm{Y} \leftarrow \mathrm{Z}$ (Y or any descendent of Y is observed)
- An (undirected) path is active if all of it's triples are active.

D-separation in Bayesian Networks

- Goal: Answer queries of the form: $A \Perp B \mid\{C, D, \ldots\}$
-D-separation Algorithm:
- For all (undirected) paths from A to B
- Check if path is active (i.e all triples are active)
- Return "A $\Perp \mathrm{B} \mid\{C, D, \ldots\}$ is not guaranteed"
- If all paths are inactive:
- Return " $A \Perp B \mid\{C, D, \ldots\}$ is true"

D-separation Examples

- Are the following conditional independences guaranteed?

1. $B \Perp M$
2. $B \Perp M \mid A_{3}$
3. $E \Perp B$
4. $E \Perp B \mid A_{1}$
5. $E \Perp B \mid A_{2}$
6. $E \Perp B \mid J$
7. $A_{1} \Perp A_{2}$
8. $A_{1} \Perp A_{2} \mid E$
9. $A_{2} \Perp A_{3} \mid B$
10. J $\Perp \mathrm{M}$
11. $J \Perp M \mid A_{3}$

D-separation Examples

- Are the following conditional independences guaranteed?

1. $B \Perp M$ (False)
2. $B \Perp M \mid A_{3}$ (True)
3. $E \Perp B$ (True)
4. $E \Perp B \mid A_{1}$ (False)
5. $E \Perp B \mid A_{2}$ (True)
6. $E \Perp B \mid J($ False)
7. $A_{1} \Perp A_{2}$ (False)
8. $A_{1} \Perp A_{2} \mid E$ (False)
9. $A_{2} \Perp A_{3} \mid B$ (True)
10. J $\Perp \mathrm{M}$ (False)
11. $J \Perp M \mid A_{3}$ (True)

D-separation in Bayesian Networks

- Goal: Answer queries of the form: $A \Perp B \mid\{C, D, \ldots\}$
-D-separation Algorithm:
- For all (undirected) paths from A to B
- Check if path is active (i.e all triples are active)
- Return "A $\Perp \mathrm{B} \mid\{C, D, \ldots\}$ is not guaranteed"
- If all paths are inactive:
- Return " $A \Perp B \mid\{C, D, \ldots\}$ is true"

Break \& Quiz

Quiz

True or False:

Bayesian networks can be used for unsupervised learning only. They cannot be used for supervised
 learning.

Ans: False

Quiz

You are given data of the form $\left\{B_{i}, E_{i}, J_{\mathrm{i}}, M_{i}\right\}_{\mathrm{i}}$. That is, you observe all variables except A.

1. Can you still learn the parameters via MLE?
2. If yes, what algorithm will you use?

Ans:

1. Yes
2. EM

B	E	A	J	M
f	f	$?$	f	f
f	f	$?$	t	f
t	f	$?$	t	t
f	f	$?$	f	t
f	t	$?$	t	f
f	f	$?$	f	t
t	t	$?$	t	t
f	f	$?$	f	f
f	f	$?$	t	f
f	f	$?$	f	t

Example: EM for parameter learning

suppose we're given the following initial BN and training set

B	E	A	J	M
f	f	$?$	f	f
f	f	$?$	t	f
t	f	$?$	t	t
f	f	$?$	f	t
f	t	$?$	t	f
f	f	$?$	f	t
t	t	$?$	t	t
f	f	$?$	f	f
f	f	$?$	t	f
f	f	$?$	f	t

E-step

Example: E-step

M-step
re-estimate probabilities using expected counts

$$
\begin{aligned}
& P(a \mid b, e)=\frac{0.997}{1} \\
& P(a \mid b, \neg e)=\frac{0.98}{1} \\
& P(a \mid \neg b, e)=\frac{0.3}{1}
\end{aligned}
$$

re-estimate probabilities for $P(J \mid A)$ and $P(M \mid A)$ in same way

B	E	A	J	M
f	f	$\begin{aligned} & \text { t: } 0.0069 \\ & \text { f: } 0.9931 \end{aligned}$	f	f
f	f	$\begin{aligned} & \mathrm{t}: 0.2 \\ & \mathrm{f}: 0.8 \end{aligned}$	t	f
t	f	$\begin{aligned} & \text { t:0.98 } \\ & \text { f: } 0.02 \end{aligned}$	t	t
f	f	$\begin{aligned} & \text { t: } 0.2 \\ & \text { f: } 0.8 \end{aligned}$	f	t
f	t	$\begin{aligned} & \text { t: } 0.3 \\ & \text { f: } 0.7 \end{aligned}$	t	f
f	f	$\begin{aligned} & \mathrm{t}: 0.2 \\ & \text { f: } 0.8 \end{aligned}$	f	t
t	t	$\begin{aligned} & \text { t: } 0.997 \\ & \text { f: } 0.003 \end{aligned}$	t	t
f	f	$\begin{aligned} & \text { t: } 0.0069 \\ & \text { f: } 0.9931 \end{aligned}$	f	f
f	f	$\begin{aligned} & \mathrm{t}: 0.2 \\ & \text { f: } 0.8 \end{aligned}$	t	f
f	f	$\begin{aligned} & \text { t: } 0.2 \\ & \text { f: } 0.8 \end{aligned}$	f	t

M-step
re-estimate probabilities using expected counts

$$
P(j \mid a)=\frac{E \#(a \wedge j)}{E \#(a)}
$$

$P(j \mid a)=$
$\frac{0.2+0.98+0.3+0.997+0.2}{0.0069+0.2+0.98+0.2+0.3+0.2+0.997+0.0069+0.2+0.2}$
$P(j \mid \neg a)=$
$\frac{0.8+0.02+0.7+0.003+0.8}{0.9931+0.8+0.02+0.8+0.7+0.8+0.003+0.9931+0.8+0.8}$

B	E	A	J	M
f	f	$\begin{aligned} & \text { t: } 0.0069 \\ & \text { f: } 0.9931 \end{aligned}$	f	f
f	f	$\begin{aligned} & \mathrm{t}: 0.2 \\ & \mathrm{f}: 0.8 \end{aligned}$	t	f
t	f	$\begin{aligned} & \mathrm{t}: 0.98 \\ & \mathrm{f}: 0.02 \end{aligned}$	t	t
f	f	$\begin{aligned} & \text { t: } 0.2 \\ & \text { f: } 0.8 \end{aligned}$	f	t
f	t	$\begin{aligned} & \text { t: } 0.3 \\ & \text { f: } 0.7 \end{aligned}$	t	f
f	f	$\begin{aligned} & \text { t:0.2 } \\ & \text { f: } 0.8 \end{aligned}$	f	t
t	t	$\begin{aligned} & \text { t: } 0.997 \\ & \text { f: } 0.003 \end{aligned}$	t	t
f	f	$\begin{aligned} & \text { t: } 0.0069 \\ & \text { f: } 0.9931 \end{aligned}$	f	f
f	f	$\begin{aligned} & \text { t:0.2 } \\ & \text { f: } 0.8 \end{aligned}$	t	f
f	f	$\begin{aligned} & \text { t: } 0.2 \\ & \text { f: } 0.8 \end{aligned}$	f	t

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas, and Fred Sala

