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Bayesian	Networks	Example	

• Consider	the	following	5	binary	random	variables:	
B	=	a	burglary	occurs	at	the	house	
E	=	an	earthquake	occurs	at	the	house	
A	=	the	alarm	goes	off	
J		=	John	calls	to	report	the	alarm	
M	=	Mary	calls	to	report	the	alarm	

• Suppose	the	Burglary	or	Earthquake	can	trigger	Alarm,	and	
Alarm	can	trigger	John’s	call	or	Mary’s	call	

• Now	we	want	to	answer	queries	like	what	is		P(B	|	M,	J)	?			

	



Bayesian	Networks	Example	

• Set	up	a	network	that	shows	how	random	variables	influence	
others:	

	

Burglary Earthquake 

Alarm 

Burglary Earthquake 

Alarm 

John Calls Mary Calls 



Bayesian	Networks	Example	

• Set	up	a	network	that	shows	how	random	variables	influence	
others:	

	

Burglary Earthquake 

Alarm 

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 

t f 
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P	(	B	)	
t f 
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P	(	E	)	

B E t f 

t t 0.95 0.05 

t f 0.94 0.06 

f t 0.29 0.71 

f f 0.001 0.999 

P	(	A	|	B,	E	)	

A t f 

t 0.9 0.1 

f 0.05 0.95 

P	(	J	|	A)	

A t f 

t 0.7 0.3 

f 0.01 0.99 

P	(	M	|	A)	



Inference	by	Enumeration	

• Let	a	denote	A=true,	and	¬a	denote	A=false
• Suppose	we’re	given	the	query:	P(b | j, m)
					“probability	the	house	is	being	burglarized	given	that	John	
and	Mary	both	called”	

• From	the	graph	structure	we	can	first	compute:	

	
A

B E

MJ

sum	over	possible	
values	for	E	and	A
variables	(e, ¬e, a, ¬a) 
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Parameter	Learning:	MLE	

• Goal:	infer	the	parameters	of	the	CPDs	
• As	usual,	can	use	MLE	

independent	parameter	learning	
problem	for	each	CPD	
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Parameter	Learning:	MLE	Example	

• Goal:	infer	the	parameters	of	the	CPDs	
• Consider	estimating	the	CPD	parameters	for	B	and	J	in	the	
alarm	network	given	the	following	data	set	
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Break & Quiz



Quiz	

Can	the	Naïve	Bayes’	model	be	represented	as	a	Bayesian	
network?	
If	no,	explain	why.	If	yes,	draw	the	network.	
	
	
Ans:	Yes	
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Undirected	Graphical	Models	

• Still	want	to	encode	conditional	independence,	but	not	in	a	
causal	way	(ie,	no	parents,	direction)
• Why?	Allows	for	modeling	other	distributions	that	Bayes	nets	can’t,	
allows	for	other	algorithms	

• Graph	directly	encodes	a	type	of	conditional	
independence.	If	nodes	i,j	are	not	neighbors,		



Markov	Random	Fields	

• A	particularly	popular	kind	of	undirected	model.	As	above,	
can	describe	in	terms	of:	
• 1.	Conditional	independence:	

• 2.	Factorization.	(Clique:	maximal	fully-connected	subgraphs)	
• Bayes	nets:	factorize	over	CPTs	with	parents;	MRFs:	factorize	over	cliques	

Potential	functions	Partition	function	



Ising	Models	

• Ising	models:	a	particular	kind	of	MRF	usually	written	in	
exponential	form	
• Popular	in	statistical	physics	
• Idea:	pairwise	interactions	(biggest	cliques	of	size	2)	

• Challenges:	
• Compute	partition	function	
• Perform	inference/marginalization	

	
	

Khudier	and	Fawaz	
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Structure	Learning	

• Generally	a	hard	problem,	many	approaches.		
• Exponentially	(or	worse)	many	structures	in	#	variables	
• Can	either	use	heuristics	or	restrict	to	some	tractable	subset	of	
networks.	Ex:	trees		

• Chow-Liu	Algorithm	
• Learns	a	BN	with	a	tree	structure	that	maximizes	the	likelihood	of	
the	training	data	

1.  Compute	weight	I(Xi, Xj) of	each	possible	edge	(Xi, Xj)
2.  Find	maximum	weight	spanning	tree	(MST)	



Chow-Liu:	Computing	weights	

• 	Use	mutual	information	to	calculate	edge	weights	
	
	
	
	
	
	

• The	probabilities	are	calculated	empirically	using	data	
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Chow-Liu:	Finding	MST	

• 	Many	algorithms	for	calculating	MST	(e.g	Kruskal’s,	Prim’s)	
	

• Kruskal’s	algorithm	
	
	
	
	
	

given:	graph	with	vertices	V	and	edges	E
	
Enew  ← { } 
for	each	(u, v) in E ordered by weight (from high to low) 
{	
	remove (u, v) from E 
	if	adding	(u, v) to	Enew does not create a cycle	
	 	add	(u, v) to		Enew

}	
return	V and Enew which represent an MST 
		 		



Chow-Liu:	Example	
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• 	First,	calculate	empirical	mutual	information	for	each	pair	and	
calculate	edge	weights.	
• Graph	is	usually	fully	connected	(using	a	non-complete	graph	for	clarity)	
	

	



Chow-Liu:	Example	(cont’d)	
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Chow-Liu:	Example	(cont’d)	
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Chow-Liu	Algorithm	

1.  Finding	tree	structures	is	a	‘second	order’	approximation	
• First	order:	product	of	marginals	
• Second	order:	allow	conditioning	on	one	variable	
	

2.  To	assign	directions	in	a	Bayes’	network,	pick	a	root	and	making	
everything	directed	from	root	(may	require	domain	expertise)	

A

B

C

D E

F G

A
B

C

D E

F G

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11



Outline	

• Bayesian	Networks	Review	
• Definition,	examples,	inference,	learning	

• Undirected	Graphical	Models	
• Definitions,	MRFs,	exponential	families	

• Structure	learning	
• Chow-Liu	Algorithm	

• D-separation	



D-separation	in	Bayesian	Networks	

A

B E

MJ

• 	Which	of	the	following	are	true?	
1.  J	⫫	M			
2.  J	⫫	M		|	A	
3.  B	⫫	J			
4.  B	⫫	J			|	A			
5.  B	⫫	E	
6.  B	⫫	E		|		A



D-separation	in	Bayesian	Networks	

• Still	want	to	encode	conditional	independence,	but	not	in	a,		

A

B E

MJ

• 	Which	of	the	following	are	true?	
1.  J	⫫	M			(False)	
2.  J	⫫	M		|	A		(True)																
3.  B	⫫	J		(False)	
4.  B	⫫	J			|	A		(True)	
5.  B	⫫	E			(True)	
6.  B	⫫	E		|		A	(False)



D-separation	in	Bayesian	Networks	

• D-separation:	A	formal	way	to	answer	questions	of	
conditional	independence:	
• E.g.	J	⫫	M		|	A,							J	⫫	E		|	B,	M		etc.	

A

B E

M

• Triples:	Any	3	connected	vertices	
• 	We	say	that	a	triple	is	active	if	

• (Causal	chain):		X	è	Y	è	Z										(Y	is	unobserved)	
• (Common	cause):	X	ç	Y	è	Z						(Y	is	unobserved)	
• (Common	effect):	X	è	Y	ç	Z						(Y	or	any	descendent	of	Y	is	observed)	

• An	(undirected)	path	is	active	if	all	of	it’s	triples	are	active.		

J



D-separation	in	Bayesian	Networks	

• Goal:	Answer	queries	of	the	form:			A	⫫	B	|	{C,	D,	…}	
• D-separation	Algorithm:	

• For	all	(undirected)	paths	from	A	to	B	
• Check	if	path	is	active	(i.e	all	triples	are	active)	

• Return	“A	⫫	B	|	{C,	D,	…}	is	not	guaranteed”	
• If	all	paths	are	inactive:	

• Return	“A	⫫	B	|	{C,	D,	…}	is	true”	
	



D-separation	Examples	

A1

E B

M

• 	Are	the	following	conditional	
independences	guaranteed?	
1.  B	⫫	M	
2.  B	⫫	M	|	A3	
3.  E	⫫	B				
4.  E	⫫	B	|	A1			
5.  E	⫫	B	|	A2	
6.  E	⫫	B		|		J	
7.  A1	⫫	A2	
8.  A1	⫫	A2		|	E	
9.  A2	⫫	A3	|	B	
10. 	J	⫫	M	
11. 	J	⫫	M	|	A3	

A2 A3

J



D-separation	Examples	

A1

E B

M

• 	Are	the	following	conditional	
independences	guaranteed?	
1.  B	⫫	M			(False)	
2.  B	⫫	M	|	A3		(True)																
3.  E	⫫	B			(True)			
4.  E	⫫	B	|	A1		(False)	
5.  E	⫫	B	|	A2		(True)	
6.  E	⫫	B		|		J	(False)	
7.  A1	⫫	A2		(False)	
8.  A1	⫫	A2		|	E		(False)	
9.  A2	⫫	A3	|	B		(True)	
10. 	J	⫫	M				(False)	
11. 	J	⫫	M	|	A3		(True)	

A2 A3

J



D-separation	in	Bayesian	Networks	

• Goal:	Answer	queries	of	the	form:			A	⫫	B	|	{C,	D,	…}	
• D-separation	Algorithm:	

• For	all	(undirected)	paths	from	A	to	B	
• Check	if	path	is	active	(i.e	all	triples	are	active)	

• Return	“A	⫫	B	|	{C,	D,	…}	is	not	guaranteed”	
• If	all	paths	are	inactive:	

• Return	“A	⫫	B	|	{C,	D,	…}	is	true”	
	



Break & Quiz



Quiz	
	

A

B E

MJ

True	or	False:		
Bayesian	networks	can	be	used	for	unsupervised	
learning	only.	They	cannot	be	used	for	supervised	
learning.	

Ans:	False	



Quiz	
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MJ

You	are	given	data	of	the	form	{Bi,	Ei,	Ji,	Mi}i.	That	is,	you	observe	
all	variables	except	A.	
1.  Can	you	still	learn	the	parameters	via	MLE?	
2.  If	yes,	what	algorithm	will	you	use?	

Ans:	
1.   Yes	
2.   EM	

B E A J M 
f f ? f f 
f f ? t f 
t f ? t t 
f f ? f t 
f t ? t f 
f f ? f t 
t t ? t t 
f f ? f f 
f f ? t f 
f f ? f t 



Example:	EM	for	parameter	learning	

B E A J M 
f f ? f f 
f f ? t f 
t f ? t t 
f f ? f t 
f t ? t f 
f f ? f t 
t t ? t t 
f f ? f f 
f f ? t f 
f f ? f t 
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B E P(A) 

t t 0.9 

t f 0.6 

f t 0.3 

f f 0.2 

P(B) 

0.1 

P(E) 

0.2  

A P(J) 

t 0.9 

f 0.2 

A P(M) 

t 0.8 

f 0.1 

suppose	we’re	given	the	following	initial	BN	and	training	set	



E-step	
B E A J M 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f:0.8 t f 

t f t:0.98 
f: 0.02 t t 

f f t: 0.2 
f: 0.8 f t 

f t t: 0.3 
f: 0.7 t f 

f f t:0.2 
f: 0.8 f t 

t t t: 0.997 
f: 0.003 t t 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f: 0.8 t f 

f f t: 0.2 
f: 0.8 f t 
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t t 0.9 
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f f 0.2 
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B E P(A) 

t t 0.9 

t f 0.6 

f t 0.3 

f f 0.2 

P(B) 

0.1 

P(E) 

0.2  

A P(J) 

t 0.9 

f 0.2 

A P(M) 

t 0.8 

f 0.1 

Example:	E-step	



M-step	
B E A J M 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f:0.8 t f 

t f t:0.98 
f: 0.02 t t 

f f t: 0.2 
f: 0.8 f t 

f t t: 0.3 
f: 0.7 t f 

f f t:0.2 
f: 0.8 f t 

t t t: 0.997 
f: 0.003 t t 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f: 0.8 t f 

f f t: 0.2 
f: 0.8 f t 
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re-estimate	probabilities	
using	expected	counts	

B E P(A) 

t t 0.997

t f 0.98

f t 0.3

f f 0.145

re-estimate	probabilities	for		
P(J | A)	and	P(M | A)	in	same	way	
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M-step	
B E A J M 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f:0.8 t f 

t f t:0.98 
f: 0.02 t t 

f f t: 0.2 
f: 0.8 f t 

f t t: 0.3 
f: 0.7 t f 

f f t:0.2 
f: 0.8 f t 

t t t: 0.997 
f: 0.003 t t 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f: 0.8 t f 

f f t: 0.2 
f: 0.8 f t 
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Thanks Everyone!
Some	of	the	slides	in	these	lectures	have	been	adapted/borrowed	from	materials	developed	by	Mark	Craven,	
David	Page,	Jude	Shavlik,	Tom	Mitchell,	Nina	Balcan,	Elad	Hazan,	Tom	Dietterich,	Pedro	Domingos,	Jerry	Zhu,	
Yingyu	Liang,	Volodymyr	Kuleshov,	Fei-Fei	Li,	Justin	Johnson,	Serena	Yeung,	Pieter	Abbeel,	Peter	Chen,	Jonathan	
Ho,	Aravind	Srinivas,	and	Fred	Sala	


