
CS 760: Machine Learning
Less-than-full Supervision

Kirthi	Kandasamy	
	

University	of	Wisconsin-Madison	
	

April	3,	2023	



Outline	

• Semi-Supervised	Learning	
• Basic	setup,	label	propagation,	graph	neural	networks	
• Weak	Supervision	
• Labeling	functions,	accuracies	&	correlations,	learning	
• Self-Supervised	Learning	
• 	Contrastive	learning,	pretext	tasks,	SimCLR	

• Next	lecture:	Kernels	&	SVMs	
	



Outline	

• Semi-Supervised	Learning	
• Basic	setup,	label	propagation,	graph	neural	networks	
• Weak	Supervision	
• Labeling	functions,	accuracies	&	correlations,	learning	
• Self-Supervised	Learning	
• 	Contrastive	learning,	pretext	tasks,	SimCLR	

	



Semi-Supervised	Learning:	Setup	

• Our	usual	supervised	setup:	
	
• Downside:	
• Getting	labels	for	all	our	instances	might	be	
expensive.	
• Ex:	medical	images:	doctors	need	to	produce	labels	

• Semi-supervised:	some	labels,	most	unlabeled	

nL	labeled	points	 nU	unlabeled	points	



Semi-Supervised	Learning:	Techniques	

• Large	space	of	approaches		
• Could	cover	a	full	class…	

• We’ll	focus	on	a	classic	technique:	label	propagation	
• Explicit:	computes	labels	for	the	unlabeled	data,	then	train	a	model	

• A	modern	set	of	techniques:	graph	neural	networks	
• will	not	cover	in	this	class	



Label	Propagation:	Setup	

• Have:	

• Goal:	label	the	nU	unlabeled	points	
• Basic	idea:	points	that	are	close	should	have	similar	labels	

• Approach:	create	a	complete	graph	with	edge	weights		



Label	Propagation:	Setup	

• Have:	

• Approach:	create	a	complete	graph	with	edge	weights	

• Define	a	transition	matrix	T	with		



Label	Propagation:	Algorithm	

• The	algorithm	is	simple.	Set	Y	to	be	a	(nL+nU)xC	matrix	with	
each	row	the	distribution	of	point	I	(labeled	or	unlabeled)	
• At	each	iteration,	
1.  Propagate:	Y	←	TY	
2.  Normalize	(row-wise)	Y	
3.  Clamp	labeled	data	

• Continue	until	convergence	
• Clamping:	force	the	labeled	points	to	their	known	distributions	(ie,	
1	for	their	label’s	class,	0	for	the	others)	



Label	Propagation:	Results	

• Let’s	compare	this	to	just	using	kNN	to	label	points:	

• 3	color	strips:	one	labeled	point	in	each.		
• kNN	ignores	structure.	Label	propagation	uses	it.	



Break & Quiz



Break	&	Quiz	
Q	1-1:	True	or	False	
1.  Label	propagation	will	produce	similar	outcomes	to	k	

nearest	neighbors	when	label	density	is	high		
2.  Label	propagation	is	guaranteed	to	recover	the	true	labels	

for	its	unlabeled	points.	
	
A.  True	and	True	
B.  True	and	False	
C.  False	and	True	
D.  False	and	False	



Break	&	Quiz	
Q	1-1:	True	or	False	
1.  Label	propagation	will	produce	similar	outcomes	to	k	

nearest	neighbors	when	label	density	is	high		
2.  Label	propagation	is	guaranteed	to	recover	the	true	labels	

for	its	unlabeled	points.	
	
A.  True	and	True	
B.   True	and	False	
C.  False	and	True	
D.  False	and	False	

If	label	density	is	high,	there	will	be	
nearby	points	(ie,	small	distances)	that	
are	labeled	so	LabelProp	will	have	similar	
behavior	to	kNN.	
	
LabelProp	works	only	if	underlying	
distance	assumption	holds.	



Outline	

• Semi-Supervised	Learning	
• Basic	setup,	label	propagation,	graph	neural	networks	
• Weak	Supervision	
• Labeling	functions,	accuracies	&	correlations,	learning	
• Self-Supervised	Learning	
• 	Contrastive	learning,	pretext	tasks,	SimCLR	

	



Weak	Supervision:	Motivation	

• As	before,	labels	are	very	expensive	to	get.	
• Sometimes	we	can	get	cheaper	sources	to	label	points	
• Noisy…	
• But	can	acquire	several	of	them	

• Some	examples	of	sources:	
• Heuristics	(expressed	via	small	programs)	
• Pre-trained	models	
• Lookups	in	knowledge	bases	
• Crowdsourced	workers	

@labeling_function()	
def	check_out(x):	
				return	SPAM	if	"check	out"	in	x.text.lower()	else	ABSTAIN	



Weak	Supervision:	Pipeline	

• Three	components	

def	LF_pneumo(x):	
			if	re.search(r’pneumo.*’,	X.text):	
						return	“ABNORMAL”	

def	LF_short_report(x):	
			if	len(X.words)	<	15:	
						return	“NORMAL”	

def	LF_ontology(x):	
			if	DISEASES	&	X.words:	
						return	“ABNORMAL”	

def	LF_off_shelf_classifier(x):	
			if	off_shelf_classifier(x)	==	1:	
						return	“NORMAL”	

LABELING	FUNCTIONS	

1.  Users	write	labeling	
functions	to	create	

noisy	labels	

TRAINING	DATA	

𝑌	

LABEL	MODEL	

2.	Model	and	combine	
these	labels	

END	MODEL	

3.	The	generated	labels	
are	used	to	train	a	
downstream	model	



Weak	Supervision:	Intuition	&	Majority	Vote	

• Pretend	we’re	in	court:	

Votes	

Naïve	approach:	majority	vote	
16	

Witnesses	



Weak	Supervision:	

• Can	we	do	better?	
• Some	witnesses	more	reliable,	others	are	voting	in	a	bloc	

Witnesses	

reliability	

reliability	

reliability	

reliability	

reliability	

Witnesses	

…	

1.	Incorporate	
accuracies	

2.	Incorporate	
correlations	



Weak	Supervision:	Label	Model	

• Suppose	we	have	labeling	functions																										and	the	true	
(unobserved)	label	is	.		
• Goal:	we	want	to	compute	the	conditional	probability	

	
	

• Read:	given	a	set	of	votes	from	the	m	labeling	functions,	how	likely	is	Y	
to	be	0?	To	be	1?	Etc…	

• Q:	Encode	this	information	into	an	undirected	graphical	model:	
the	Label	Model	



Weak	Supervision:	Label	Model	Structure	

• Basic	idea:	

…	

𝜆↓1 	

𝜆↓2 	

𝜆↓3 	

𝑌	



Outline	

• Semi-Supervised	Learning	
• Basic	setup,	label	propagation,	graph	neural	networks	
• Weak	Supervision	
• Labeling	functions,	accuracies	&	correlations,	learning	
• Self-Supervised	Learning	
• 	Contrastive	learning,	pretext	tasks,	SimCLR	

	



Stanford	CS	231n	

Self	Supervision:	Basic	Idea	

• Suppose	we	have	no	labeled	data,	nor	weak	sources	
• What	can	we	do	with	unlabeled	data?	
• Generative	modeling,	etc.	
• Could	also	obtain	representations	(ie	new	features)	for	
downstream	use.	

• Need	to	create	tasks	from	unlabeled	data:	“Pretext	tasks”	
• Ex:	predict	stuff	you	already	know	



Representations	using	pretext	tasks	

Intuition:	a	network	that	does	well	on	pretext	tasks	has	also	
learned	some	representation	that	is	useful	for	the	actual	task.	
• Use	the	learned	network	as	a	feature	extractor	
• Then,	train	using	a	small	amount	of	data	

Stanford	CS	231n	



Self	Supervision:	Pretext	Tasks	

• Lots	of	options	for	pretext	tasks	
• Predict	rotations	
• Coloring	
• Fill	in	missing	portions	of	the	image	
• Solve	puzzles:	

Noroozi	and	Favaro	



Contrastive	Learning:	Basics	

• Want	to	learn	representations	so	that:	
• Transformed	versions	of	single	sample	are	similar	
• Different	samples	are	different	

Stanford	CS	231n	



Contrastive	Learning:	Motivation	

• Contrastive	learning	goal:	
• Keep	together	related	representations,	push	unrelated	apart.	
• The	InfoNCE	loss	function:	

		
Positive	sample:	
keep	close	

Negative	samples:	
keep	far	

Van	den	Oord	et	al.,	2018	



Contrastive	Learning:	Frameworks	

• Many	approaches	(very	active	area	of	research)	
• A	popular	approach:	SimCLR.	Score	function	is	cosine	similarity,	

• Generate	positive	samples:	
Choose	random	augmentations	

	

Chen	et	al.,	2020	



Contrastive	Learning:	Frameworks	

• Many	approaches	(very	active	area	of	research)	
• A	popular	approach:	SimCLR.	Score	function	is	cosine	similarity,	

• Generate	positive	samples:	
Choose	random	augmentations	

	



Thanks Everyone!

Some	of	the	slides	in	these	lectures	have	been	adapted/borrowed	from	materials	developed	by	Mark	Craven,	
David	Page,	Jude	Shavlik,	Tom	Mitchell,	Nina	Balcan,	Elad	Hazan,	Tom	Dietterich,	Pedro	Domingos,	Jerry	Zhu,	
Yingyu	Liang,	Volodymyr	Kuleshov		


