

CS 760: Machine Learning Reinforcement Learning I

Kirthi Kandasamy

University of Wisconsin-Madison Apr 12/17, 2023

Announcements

•Homework 7 (last HW) is out, due on May 1.

Outline

Introduction to Reinforcement Learning

•Basic concepts, mathematical formulation, MDPs, policies

Valuing and Obtaining Policies

•Value functions, Bellman equation, value iteration, policy iteration

•Q Learning

•Q function, Q-learning, SARSA, approximation

Outline

Introduction to Reinforcement Learning

•Basic concepts, mathematical formulation, MDPs, policies

Valuing and Obtaining Policies

•Value functions, Bellman equation, value iteration, policy iteration

•Q Learning

•Q function, Q-learning, SARSA, approximation

A General Model

We have an **agent interacting** with the **world**

- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

Mnih et al, "Human-level control through deep reinforcement learning"

A. Nielsen

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, "How to Train Your Robot with Deep Reinforcement Learning – Lessons We've Learned "

Building a formal model

Basic setup:

- •Set of states, S
- •Set of actions A

- •Information: at time *t*, observe state $s_t \in S$. Get reward r_t
- •Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from **states to actions** maximize rewards.

A "policy"

Markov Decision Process (MDP)

- •State set S. Initial state s_{0.} Action set A
- •State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.
 - More generally: $P(r_{t+1}, s_{t+1} | s_t, a_t)$
- Reward function: **r**(s_t)

•**Policy**: $\pi(s) : S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

r(*s*) = -0.04 for every non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

r(*s*) = -0.04 for every non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

Back to MDP Setup

The formal mathematical model:

- •State set S. Initial state s_{0.} Action set A
- •State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.
- Reward function: **r**(**s**_t)

How do we find the best policy?

•**Policy**: $\pi(s) : S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value
- B. The policy maps states to actions
- C. The probability of next state can depend on current and previous states

Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value
- B. The policy maps states to actions
- C. The probability of next state can depend on current and previous states

Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value (True)
- B. The policy maps states to actions (True: a policy tells you what action to take for each state (Although it could map to a distribution over actions as well)).
- C. The probability of next state can depend on current and previous states (False: Markov assumption).

Outline

Intro to Reinforcement Learning
Basic concepts, mathematical formulation, MDPs, policies

Valuing and Obtaining Policies

•Value functions, Bellman equation, value iteration, policy iteration

•Q Learning

•Q function, Q-learning, SARSA, approximation

Values & Policies

For policy π , the value starting from produced by following that policy:

 $V^{\pi}(\mathbf{s}_0) =$

P(sequence)U(sequence)

sequences (s_t,a_t,r_t,s_{t+1}) starting from s₀

U(sequence): sum of rewards when following a sequence Value: Expected sum of rewards when starting from a state Called the **value function** (for π)

Values & Polices: Discounting Rewards

- •If each sequence is finite and the reward at each state is bounded, the value of a policy is also bounded.
- •But if it is an infinite series, we usually discount rewards,

$$U(\mathbf{s}_0, \mathbf{s}_1 \dots) = \mathbf{r}(\mathbf{s}_0) + \gamma \mathbf{r}(\mathbf{s}_1) + \gamma^2 \mathbf{r}(\mathbf{s}_2) + \dots = \sum_{t \ge 0} \gamma^t \mathbf{r}(\mathbf{s}_t)$$

- •Discount factor γ between 0 and 1
 - •Set according to how important present is VS future
 - •Has to be less than 1 for convergence

Quiz: Find the value of this policy from all states

Deterministic transitions, γ =0.8, policy shown in red arrow.

Finding the value of a policy: the Bellman Equation

$$V^{\pi}(s) = r(s) + \gamma \sum_{\substack{s' \\ \downarrow s'}} P(s'|s, \pi(s)) V^{\pi}(s')$$

Current state reward Discounted expected future rewards

Proof: (see board)

• Richard Bellman: inventor of dynamic programming

Value Iteration using the Bellman equation

How do we find V^{π} (s)?

•Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)

Initialize some value function $V_0^{\pi}(s)$ (typically $V_0^{\pi}(s) = 0$). Then, update

$$V_{i+1}^{\pi}(s) \leftarrow r(s) + \gamma \sum_{s'} P(s'|s,\pi(s)) V_i^{\pi}(s')$$

Quiz: Find value of this policy using the Bellman equation

Deterministic transitions, γ =0.8, policy shown in red arrow.

Obtaining the optimal policy

Now that V^{π} is defined for all policies, how do we define the optimal policy?

- First, set $V^*(s)$ to be expected utility for **optimal** policy π^* from s. (That is, $V^*(s) = V^{\pi^*}(s) > V^{\pi}(s)$ for all other policies π .)
- •What is the expected utility of a in state s? That is, what is the best you could hope to do, after taking action a in state s.

Obtaining the Optimal Policy

We know the expected utility of an action. •So, to get the optimal policy, compute

$$\pi^{*}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) V^{*}(s')$$

All the states we Transition Expected
could go to probability rewards

Obtaining the optimal policy

Now we can obtain the optimal policy via,

$$\pi^*(\boldsymbol{s}) = \operatorname{argmax}_{\boldsymbol{a}} \sum_{\boldsymbol{s}'} P(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) V^*(\boldsymbol{s}')$$

•So we need to know $V^*(s)$.

- •But it was defined in terms of the optimal policy!
- •So we need some other approach to get $V^*(s)$.
- •Need some other **property** of the value function!

Bellman Equation (for the optimal policy)

Bellman Equation

Let us walk over one step for the value function:

 Define state utility V^{*}(s') as the expected sum of discounted rewards if the agent executes an *optimal* policy starting in state s'

• What is the expected utility of taking action a in state s?

$$\sum P(s'|s,a)V^*(s')$$

• How do we choose the action?

$$\pi^*(s) = \arg \max_a \sum_{s'} P(s'|s, a) V^*(s')$$

What is the recursive expression for V*(s) in terms of V*(s') - the utilities of its successors?

$$V^{*}(s) = r(s) + \gamma \sum_{s'} P(s'|s, \pi^{*}(s)) V^{*}(s')$$

• How do we choose the action?

$$\pi^*(s) = \arg \max_a \sum_{s'} P(s'|s, a) V^*(s')$$

 What is the recursive expression for V*(s) in terms of V*(s') - the utilities of its successors?

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s')$$

Value Iteration to find optimal value function

- **Q**: how do we find $V^*(s)$?
- •Why? Can use it to get the best policy
- •Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
- •Also know V*(s) satisfies Bellman equation (recursion above)

A: Use Bellman Equation. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

Value Iteration: Demo

REINFORCEjs: Gridworld with Dyr × +												•	
← → C												E ☆	F :
🗰 Apps 🔞 CS760 Fall 2021 🎧 phylogenetic-trees 📖 🏟 Projection of point 📀 Unsupervised Learn 🧕 Label Verbalization 🔳 Asymptotic Normal												» 🛅	Reading list
[Gri	dWo	rld:	Dynamic Pr			Ogramming Toggle Value Iteration			emo Rese	ət		·
	0.22	0.25	0.27	0.31	0.34	0.38	0.34	0.31	0.34	0.38]		
	0.25	0.27	0.31	0.34	0.38	0.42	0.38	0.34	0.38	0.42	-		
	0.20 	-	→ 		· · · · · · ·		-	→					
	0.2 ‡					0.46				0.46			
	0.20 P	0.22	0.25	-0.78		0.52	0.57	0.64	0.57	0.52			
	0.22 •	0.25	0.27]	0.25 ••		0.08	-0.36	0.71	0.64	0.57			
	0.25 •	0.27 ₽	0.31	0.27 •		1.20	0.08 ← B-10	0.79	-0.29	0.52			
	0.27 F	0.31	0.34	0.31		1.0 B	0.97	0.87	-0.21	0.57			
	0.31 F	0.34	0.38	-0.58		-0. \$ 3	-0. 1 3	0.7	0.71	0.64			
	0.34	0.38	0.42	0.46	0.52	0.57	0.64	0.7	0.64	0.57			
	0.34	0.34	0.38	^{0.4} 2	0.46	0.52	^{0.57}	0.6	0.57	0.52			
Cell	reward: (select a	a cell)	1	1	L(I				

Setup

This is a toy environment called Gridworld that is often used as a toy model in the Reinforcement Learning literature. In this particular case:

Policy Iteration

With value iteration, we estimate V*

- •Then get policy (i.e., indirect estimate of policy)
- Could also try to get policies directly

•This is **policy iteration.** Basic idea:

- Start with random policy π
- Use it to compute value function V^{π} (for that policy)
- Improve the policy: obtain π'

Policy Iteration: Algorithm

Policy iteration. Algorithm

- Start with random policy π
- Use it to compute value function V^{π} : a set of linear equations

$$V^{\pi}(\boldsymbol{s}) = r(\boldsymbol{s}) + \gamma \sum_{\boldsymbol{s}'} P(\boldsymbol{s}'|\boldsymbol{s}, \boldsymbol{a}) V^{\pi}(\boldsymbol{s}')$$

• Improve the policy: obtain π'

$$\pi'({\color{black}{s}}) = rg\max_{{\color{black}{a}}} r({\color{black}{s}}) + \gamma \sum_{{\color{black}{s'}}} P({\color{black}{s'}}|{\color{black}{s}}, {\color{black}{a}}) V^{\pi}({\color{black}{s'}})$$

• Repeat

Quiz

Q 2.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that **r**(*A*) = 1, **r**(*B*) = 0. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) = \text{move}$ (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1 / (1 -γ)
- C. 1 / (1 γ²)
- D. 1

Quiz

Q 2.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) =$ move (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1/(1-γ)
- C. 1/(1-γ²)
- D. 1

Quiz

Q 2.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) =$ move (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1/(1-γ)
- **C.** 1/(1- γ^2) (States: A,B,A,B,... rewards 1,0, γ^2 ,0, γ^4 ,0, ...)
- D. 1

Outline

Intro to Reinforcement Learning

•Basic concepts, mathematical formulation, MDPs, policies

Valuing and Obtaining Policies

• Value functions, Bellman equation, value iteration, policy iteration

•Q Learning

•Q function, Q-learning, SARSA, approximation

Planning vs Learning

So far we have assumed that the transition probability P(s'|s,a) is known?

What if it is unknown?

Q-function (Action value function)

Q(s,a) tells us the value of doing action a in state s.

$$egin{aligned} Q(s,a) &= r(s) + \gamma \sum_{s'} P(s'|s,a) V^\star(s') \ &= r(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a') \end{aligned}$$

- •Note: $V^*(s) = \max_a Q(s,a)$
- •Now, we can just do $\pi^*(s) = \operatorname{argmax}_a Q(s,a)$

Learning the Q-function

What is wrong with the following strategy?

- Initialize Q₀(s,a) = 0 for all states and actions. Then,

$$Q_{i+1}(s,a) \leftarrow r(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q_i(s',a')$$

The transition probabilities P(s'|s,a) are unknown!

Instead, use monte-carlo approximations (i.e from data) by observing that

$$Q(s,a) = r(s) + \gamma \mathbb{E}_{S'} \left[\max_{a'} Q(S',a') \Big| s,a
ight]$$

п

Q-Learning

Offline setting: Estimating Q(s,a) from a given dataset (i.e sequences of the form s_0 , a_0 , s_1 , a_1 , s_2 , a_2 , ...).

Iterative procedure

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha [r(\mathbf{s}_t) + \gamma \max_{\mathbf{a}} Q(\mathbf{s}_{t+1}, \mathbf{a}) - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

Learning rate

Idea: combine old value and new estimate of future value.

Q-Learning: Making decisions while learning

Online setting: Make decisions while simultaneously learning.Make good decisions from the partially learned Q function

- But also update the Q function based on new data
- Update rule (the same)

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha[r(\mathbf{s}_t) + \gamma \max_{\mathbf{a}} Q(\mathbf{s}_{t+1}, \mathbf{a}) - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

 But what action do you choose on round t? Can you always simply choose:

$$a_t = rg\max_a Q_{t-1}(s,a)$$

Exploration Vs. Exploitation

• Exploration: take an action with unknown consequences

• Pros:

- Get a more accurate model of the environment
- Discover higher-reward states than the ones found so far

• Cons:

- When exploring, not maximizing your utility
- Something bad might happen

• Exploitation: go with the best strategy found so far

• Pros:

- Maximize reward as reflected in the current utility estimates
- Avoid bad stuff

• Cons:

• Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to **explore**?

•With some 0<ε<1 probability, take a random action at each state, or else the action with highest Q(*s*,*a*) value.

$$a = \begin{cases} \operatorname{argmax}_{a \in A} Q(s, a) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} a \in A & \operatorname{otherwise} \end{cases}$$

Q-Learning: SARSA

An alternative:

•Just use the next action in the update rule, no max over actions:

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha[r(\mathbf{s}_t) + \gamma Q(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

Learning rate

- Called state-action-reward-state-action (SARSA)
- •Can use with epsilon-greedy policy

Q-Learning Details

We have assumed known deterministic rewards so far r(s). Q-Learning works even if rewards are unknown and/or stochastic

"Model-free": we do not try to estimate transitions P(s'|s,a).

Note: if we have a **terminal** state, the process ends

- •An episode: a sequence of states ending at a terminal state
- •Want to run on many episodes
- •Slightly different Q-update for terminal states

Q-Learning – Compact Representations

Q-table can be quite large... might not even fit memorySolution: use some other representation for a more compact version. E.g: neural networks.

each input unit encodes a property of the state (e.g., a sensor value) or could have <u>one net</u> for <u>each</u> possible action

Deep Q-Learning

How do we get Q(*s*,*a*)?

Mnih et al, "Human-level control through deep reinforcement learning"

When the actions and states are discrete, for Q learning to converge to the true Q function, we must

- A. Visit every state and try every action in each state
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Prioritize exploitation over exploration.

When the actions and states are discrete, for Q learning to converge to the true Q function, we must

- A. Visit every state and try every action in each state
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Prioritize exploitation over exploration.

When the actions and states are discrete, for Q learning to converge to the true Q function, we must

- A. Visit every state and try every action in each state
- B. Perform at least 20,000 iterations. (No: this depends on the particular problem).
- C. Re-start with different random initial table values. (No: this is not necessary in general).
- D. Prioritize exploitation over exploration. (No: insufficient exploration means potentially unupdated state action pairs)

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov