
CS 760: Machine Learning
Reinforcement Learning I

Kirthi	Kandasamy	
	

University	of	Wisconsin-Madison	
Apr	12/17,	2023	

Announcements	

• Homework	7	(last	HW)	is	out,	due	on	May	1.	

Outline	

• Introduction	to	Reinforcement	Learning	
• Basic	concepts,	mathematical	formulation,	MDPs,	policies	

• Valuing	and	Obtaining	Policies	
• Value	functions,	Bellman	equation,	value	iteration,	policy	
iteration	

• Q	Learning	
• Q	function,	Q-learning,	SARSA,	approximation	

Outline	

• Introduction	to	Reinforcement	Learning	
• Basic	concepts,	mathematical	formulation,	MDPs,	policies	

• Valuing	and	Obtaining	Policies	
• Value	functions,	Bellman	equation,	value	iteration,	policy	
iteration	

• Q	Learning	
• Q	function,	Q-learning,	SARSA,	approximation	

A	General	Model	

We	have	an	agent	interacting	with	the	world	
	
	
	
• Agent	receives	a	reward	based	on	state	of	the	world	

• Goal:	maximize	reward	/	utility	
• Note:	data	consists	of	actions	&	observations	

• Compare	to	unsupervised	learning	and	supervised	learning	

	
	
	
	
	

	
	
	

World	

Agent	

Actions	

Observations	

($$$)	

Examples:	Gameplay	Agents	

AlphaZero:	

	
	
	
	
	

	
	
	

https://deepmind.com/research/alphago/	

Examples:	Video	Game	Agents	

Pong,	Atari	
	
	
	
	
	

	
	
	

Mnih	et	al,	“Human-level	control	through	deep	reinforcement	learning”	

A.	Nielsen	

Examples:	Video	Game	Agents	

Minecraft,	Quake,	StarCraft,	and	more!		
	
	
	
	
	

	
	
	

Shao	et	al,	"A	Survey	of	Deep	Reinforcement	Learning	in	Video	Games"	

Examples:	Robotics	

Training	robots	to	perform	tasks	(e.g.,	grasp!)	
	
	
	
	
	

	
	
	

Ibarz	et	al,	"	How	to	Train	Your	Robot	with	Deep	Reinforcement	Learning	–	Lessons	We’ve	Learned	"	

Building	a	formal	model	

Basic	setup:	
• Set	of	states,	S	
• Set	of	actions	A	
• Information:	at	time	t,	observe	state	st	∈	S.	Get	reward	rt	
• Agent	makes	choice	at	∈	A.	State	changes	to	st+1,	continue	

Goal:	find	a	map	from	states	to	actions	maximize	rewards.	
	
	
	
	

	
	
	

World	

Agent	

Actions	

Observations	

A	“policy”	

Markov	Decision	Process	(MDP)	

• State	set	S.	Initial	state	s0.	Action	set	A	
• State	transition	model:	

• Markov	assumption:	transition	probability	only	depends	on	st	and	at,	and	
not	previous	actions	or	states.			

• More	generally:	P(rt+1,	st+1	|	st,	at)		
• Reward	function:	r(st)	
• Policy:																												action	to	take	at	a	particular	state.		

	
	
	
	
	

	
	
	

Example	of	MDP:	Grid	World	

Robot	on	a	grid;	goal:	find	the	best	policy	

	
	
	
	
	

	
	
	

Source:	P.	Abbeel	and	D.	Klein		

Example	of	MDP:	Grid	World	

Note:	(i)	Robot	is	unreliable				(ii)	Reach	target	fast	

	
	
	
	
	

	
	
	

𝒓(𝑠) = −0.04	for	every	non-
terminal	state	

Grid	World	Abstraction	

Note:	(i)	Robot	is	unreliable				(ii)	Reach	target	fast	

	
	
	
	
	

	
	
	

𝒓(𝑠) = −0.04	for	every	non-
terminal	state	

Grid	World	Optimal	Policy	

Note:	(i)	Robot	is	unreliable				(ii)	Reach	target	fast	

	
	
	
	
	

	
	
	

𝒓(𝑠) = −0.04	for	every	non-
terminal	state	

Back	to	MDP	Setup	

The	formal	mathematical	model:	
• State	set	S.	Initial	state	s0.	Action	set	A	
• State	transition	model:	

• Markov	assumption:	transition	probability	only	depends	on	st	and	at,	and	
not	previous	actions	or	states.		

• Reward	function:	r(st)	
• Policy:																												action	to	take	at	a	particular	state.		

	
	
	
	
	

	
	
	

How	do	we	find	
the	best	policy?	

Break & Quiz

Break	&	Quiz	

	
	
	
	
	

	
	
	

Which	of	the	following	statement	about	MDP	is	not	true?	

•  A.	The	reward	function	must	output	a	scalar	value	
•  B.	The	policy	maps	states	to	actions	
•  C.	The	probability	of	next	state	can	depend	on	current	and	
previous	states	

Break	&	Quiz	

	
	
	
	
	

	
	
	

Which	of	the	following	statement	about	MDP	is	not	true?	

•  A.	The	reward	function	must	output	a	scalar	value	
•  B.	The	policy	maps	states	to	actions	
•  C.	The	probability	of	next	state	can	depend	on	current	and	
previous	states	

Break	&	Quiz	

	
	
	
	
	

	
	
	

Which	of	the	following	statement	about	MDP	is	not	true?	

•  A.	The	reward	function	must	output	a	scalar	value	(True)	
•  B.	The	policy	maps	states	to	actions	(True:	a	policy	tells	you	
what	action	to	take	for	each	state	(Although	it	could	map	to	
a	distribution	over	actions	as	well)).	

•  C.	The	probability	of	next	state	can	depend	on	current	and	
previous	states	(False:	Markov	assumption).	

Outline	

• Intro	to	Reinforcement	Learning	
• Basic	concepts,	mathematical	formulation,	MDPs,	policies	

• Valuing	and	Obtaining	Policies	
• Value	functions,	Bellman	equation,	value	iteration,	policy	
iteration	

• Q	Learning	
• Q	function,	Q-learning,	SARSA,	approximation	

Values	&	Policies	

For	policy	π,	the	value	starting	from		produced	by	
following	that	policy:	
	
	
	
	

U(sequence):	sum	of	rewards	when	following	a	sequence	
Value:	Expected	sum	of	rewards	when	starting	from	a	state	
Called	the	value	function	(for	π)	
	
	
	
	
	
	
	
	
	

	
	
	

Values	&	Polices:	Discounting	Rewards	

• If	each	sequence	is	finite	and	the	reward	at	each	state	is	
bounded,	the	value	of	a	policy	is	also	bounded.	

• But	if	it	is	an	infinite	series,	we	usually	discount	rewards,	
	
	
	
• Discount	factor	γ	between	0	and	1	

• Set	according	to	how	important	present	is	VS	future	
• Has	to	be	less	than	1	for	convergence	

	
	
	
	
	
	
	
	
	

	
	
	

Quiz:	Find	the	value	of	this	policy	from	all	states	

A	 10	

B	 20	 C	 20	

G	 100	

Deterministic	transitions,	γ=0.8,	policy	shown	in	red	arrow.	

Finding	the	value	of	a	policy:	the	Bellman	Equation	

	
	
	
	
	
	
Proof:	(see	board)	
	
• 	Richard	Bellman:	inventor	of	dynamic	programming	
	
	
	
	

	
	
	

Discounted	expected	future	
rewards	

Current	state	
reward	

Value	Iteration	using	the	Bellman	equation	

How	do	we	find	Vπ	(s)?	
• Know:	reward	r(s),	transition	probability	P(s’|s,a)	

Initialize	some	value	function	V0
π	(s)	(typically	V0

π	(s)	=0).	
Then,	update	
	
	
	
	
	

	
	
	

Quiz:	Find	value	of	this	policy	using	the	Bellman	
equation	

A	 10	

B	 20	 C	 20	

G	 100	

Deterministic	transitions,	γ=0.8,	policy	shown	in	red	arrow.	

Obtaining	the	optimal	policy	
Now	that	Vπ	is	defined	for	all	policies,	how	do	we	define	
the	optimal	policy?		
• First,	set	V*(s)	to	be	expected	utility	for	optimal	policy	π*	from	s.	
(That	is,	V*(s)	=	Vπ*(s)	>	Vπ(s)	for	all	other	policies	π.)	

• What	is	the	expected	utility	of	a	in	state	s?	That	is,	what	is	the	
best	you	could	hope	to	do,	after	taking	action	a	in	state	s.	
	
	
	
	

	
	
	

All	the	states	we	
could	go	to	

Transition	probability		 Expected	rewards	

Obtaining	the	Optimal	Policy	

We	know	the	expected	utility	of	an	action.	
• So,	to	get	the	optimal	policy,	compute	
	
	
	

	
	
	

All	the	states	we	
could	go	to	

Transition	
probability		

Expected	
rewards	 Credit	L.	Lazbenik	

Obtaining	the	optimal	policy	

Now	we	can	obtain	the	optimal	policy	via,	
	
	
• So	we	need	to	know	V*(s).	

• But	it	was	defined	in	terms	of	the	optimal	policy!	
• So	we	need	some	other	approach	to	get	V*(s).	
• Need	some	other	property	of	the	value	function!	

	
	
	

	
	
	

Bellman	Equation	(for	the	optimal	policy)	

	
	
	
	
	

	
	
	
	
	

	
	
	

Discounted	expected	
future	rewards	

Current	state	
reward	

Bellman	Equation	

Let	us	walk	over	one	step	for	the	value	function:	
	
	
	
	
	
	
	
	

	
	
	

Discounted	expected	
future	rewards	

Current	state	
reward	

Credit	L.	Lazbenik	

The	Bellman	equation	

Agent	receives	reward		

Agent	chooses	action		

Environment	returns		

• Define	state	utility	V*(s’)	as	the	expected	sum	of	
discounted	rewards	if	the	agent	executes	an	optimal	
policy	starting	in	state	s’	

	
Image	source:	L.	Lazbenik	

The	Bellman	equation	

Agent	receives	reward		

Agent	chooses	action		

Environment	returns		

• What	is	the	expected	utility	of	taking	action	a	in	
state	s?	

Image	source:	L.	Lazbenik	

The	Bellman	equation	

Agent	receives	reward		

Agent	chooses	action		

Environment	returns		

Image	source:	L.	Lazbenik	

The	Bellman	equation	

Agent	receives	reward		

Agent	chooses	action		

Environment	returns		

Image	source:	L.	Lazbenik	

The	Bellman	equation	

Agent	receives	reward		

Agent	chooses	action		

Environment	returns		

Image	source:	L.	Lazbenik	

The	Bellman	equation	

Agent	receives	reward		

Agent	chooses	action		

Environment	returns		

Image	source:	L.	Lazbenik	

Value	Iteration	to	find	optimal	value	function	

Q:	how	do	we	find	V*(s)?	
• Why?	Can	use	it	to	get	the	best	policy	
• Know:	reward	r(s),	transition	probability	P(s’|s,a)	
• Also	know	V*(s)	satisfies	Bellman	equation	(recursion	above)	

A:	Use	Bellman	Equation.	Start	with	V0(s)=0.	Then,	
update	
	
	
	
	
	

	
	
	

Value	Iteration:	Demo	

	
	
	
	
	

	
	
	 Source:	Karpathy	

Policy	Iteration	

With	value	iteration,	we	estimate	V*	
• Then	get	policy	(i.e.,	indirect	estimate	of	policy)	

• Could	also	try	to	get	policies	directly	

• This	is	policy	iteration.	Basic	idea:	
• Start	with	random	policy	π	
• Use	it	to	compute	value	function	Vπ	(for	that	policy)	
• Improve	the	policy:	obtain	π’	

	

Policy	Iteration:	Algorithm	

Policy	iteration.	Algorithm	
• Start	with	random	policy	π	
• Use	it	to	compute	value	function	Vπ	:	a	set	of	linear	equations	

• Improve	the	policy:	obtain	π’	

• Repeat	

	

Break & Quiz

Quiz	

	
	
	
	
	

	
	
	

Q	2.1	Consider	an	MDP	with	2	states	{A,	B}	and	2	actions:	“stay”	at	current	
state	and	“move”	to		other	state.	Let	r	be	the	reward	function	such	that	r(A)	
=	1,	r(B)	=	0.	Let	𝛾	be	the	discounting	factor.	Let	π:	π(A)	=	π(B)	=	move	(i.e.,	
an	“always	move”	policy).	What	is	the	value	function	𝑉𝜋(𝐴)?)?	

•  A.	0	
•  B.	1	/	(1	-𝛾)	
•  C.	1	/	(1	-𝛾2)	
•  D.	1	

Quiz	

	
	
	
	
	

	
	
	

Q	2.1	Consider	an	MDP	with	2	states	{A,	B}	and	2	actions:	“stay”	at	current	
state	and	“move”	to		other	state.	Let	r	be	the	reward	function	such	that	r(A)	
=	1,	r(B)	=	0.	Let	𝛾be	the	discounting	factor.	Let	π:	π(A)	=	π(B)	=	move	(i.e.,	an	
“always	move”	policy).	What	is	the	value	function	𝑉𝜋(𝐴)?)?	

•  A.	0	
•  B.	1/(1-𝛾)	
•  C.	1/(1-𝛾2)	
•  D.	1	

Quiz	

	
	
	
	
	

	
	
	

Q	2.1	Consider	an	MDP	with	2	states	{A,	B}	and	2	actions:	“stay”	at	current	
state	and	“move”	to		other	state.	Let	r	be	the	reward	function	such	that	r(A)	
=	1,	r(B)	=	0.	Let	𝛾be	the	discounting	factor.	Let	π:	π(A)	=	π(B)	=	move	(i.e.,	an	
“always	move”	policy).	What	is	the	value	function	𝑉𝜋(𝐴)?)?	

•  A.	0	
•  B.	1/(1-𝛾)	
•  C.	1/(1-𝛾2)	(States:	A,B,A,B,…	rewards	1,0,	𝛾2,0,	𝛾4,0,	…)	
•  D.	1	

Outline	

• Intro	to	Reinforcement	Learning	
• Basic	concepts,	mathematical	formulation,	MDPs,	policies	

• Valuing	and	Obtaining	Policies	
• Value	functions,	Bellman	equation,	value	iteration,	policy	
iteration	

• Q	Learning	
• Q	function,	Q-learning,	SARSA,	approximation	

Planning	vs	Learning	

So	far	we	have	assumed	that	the	transition	probability	
P(s’|s,a)	is	known?	
	
What	if	it	is	unknown?	
	
	
	
	
	

	
	
	

Q-function	(Action	value	function)	

Q(s,a)	tells	us	the	value	of	doing	action	a	in	state	s.	
	
	
	
	

• Note:	V*(s)	=	maxa	Q(s,a)	
• Now,	we	can	just	do	π*(s)	=	argmaxa	Q(s,a)	
	
	
	
	

	
	
	

Learning	the	Q-function	

What	is	wrong	with	the	following	strategy?	
				-	Initialize	Q0(s,a)	=	0	for	all	states	and	actions.	Then,	
	
	
The	transition	probabilities	P(s’|s,a)	are	unknown!	
	
Instead,	use	monte-carlo	approximations	(i.e	from	data)	by	
observing	that	
	
	
	

	
	
	

Q-Learning	

Offline	setting:	Estimating	Q(s,a)	from	a	given	dataset	
(i.e	sequences	of	the	form	s0,	a0,	s1,	a1,	s2,	a2,	…).	

• Iterative	procedure	

	
Idea:	combine	old	value	and	new	estimate	of	future	value.	
	
	
	
	
	

	
	
	

Learning	rate	

Q-Learning:	Making	decisions	while	learning	

Online	setting:	Make	decisions	while	simultaneously	learning.	
• Make	good	decisions	from	the	partially	learned	Q	function	
• 	But	also	update	the	Q	function	based	on	new	data	

• Update	rule	(the	same)	

	
• 	But	what	action	do	you	choose	on	round	t?	Can	you	always	
simply	choose:	

	
	
	
	
	

	
	
	

Exploration	Vs.	Exploitation	

• Exploration:	take	an	action	with	unknown	consequences	
• Pros:		

• Get	a	more	accurate	model	of	the	environment	
• Discover	higher-reward	states	than	the	ones	found	so	far	

• Cons:		
• When	exploring,	not	maximizing	your	utility	
• Something	bad	might	happen	

• Exploitation:	go	with	the	best	strategy	found	so	far	
• Pros:	

• Maximize	reward	as	reflected	in	the	current	utility	estimates	
• Avoid	bad	stuff	

• Cons:		
• Might	also	prevent	you	from	discovering	the	true	optimal	strategy	

		
	
	
	
	

	
	
	

Q-Learning:	Epsilon-Greedy	Policy	

How	to	explore?	
• With	some	0<ε<1	probability,	take	a	random	action	at	each	
state,	or	else	the	action	with	highest	Q(s,a)	value.	
	

Q-Learning:	SARSA	

An	alternative:	
• Just	use	the	next	action	in	the	update	rule,	no	max	over	actions:	

• Called	state–action–reward–state–action	(SARSA)	
• Can	use	with	epsilon-greedy	policy		
	
	
	
	
	

	
	
	

Learning	rate	

Q-Learning	Details	

We	have	assumed	known	deterministic	rewards	so	far	r(s).	Q-
Learning	works	even	if	rewards	are	unknown	and/or	stochastic	
	
“Model-free”:	we	do	not	try	to	estimate	transitions	P(s’|s,a).	
	
Note:	if	we	have	a	terminal	state,	the	process	ends	
• An	episode:	a	sequence	of	states	ending	at	a	terminal	state	
• Want	to	run	on	many	episodes	
• Slightly	different	Q-update	for	terminal	states	

	
	
	
	

	
	
	

Q-table	can	be	quite	large…	might	not	even	fit	memory	
• Solution:	use	some	other	representation	for	a	more	compact	
version.	E.g:	neural	networks.	

	
	
	
	
	

Q-Learning	–	Compact	Representations	

or	could	have	one	net	for	
each	possible	action	

each	input	unit	encodes	a	
property	of	the	state	(e.g.,	
a	sensor	value)	

Q(s, a1)

Q(s, a2)

Q(s, ak)

encoding	of	
the	state	(s)

Deep	Q-Learning	

How	do	we	get	Q(s,a)?	

	
	
	
	
	

	
	
	

Mnih	et	al,	"Human-level	control	through	deep	reinforcement	learning"	

Break	&	Quiz	

	
	
	
	
	

	
	
	

When	the	actions	and	states	are	discrete,	for	Q	learning	to	
converge	to	the	true	Q	function,	we	must	
	
•  A.	Visit	every	state	and	try	every	action	in	each	state	
•  B.	Perform	at	least	20,000	iterations.	
•  C.	Re-start	with	different	random	initial	table	values.	
•  D.	Prioritize	exploitation	over	exploration.	

Break	&	Quiz	

	
	
	
	
	

	
	
	

When	the	actions	and	states	are	discrete,	for	Q	learning	to	
converge	to	the	true	Q	function,	we	must	
	
•  A.	Visit	every	state	and	try	every	action	in	each	state	
•  B.	Perform	at	least	20,000	iterations.	
•  C.	Re-start	with	different	random	initial	table	values.	
•  D.	Prioritize	exploitation	over	exploration.	

Break	&	Quiz	

	
	
	
	
	

	
	
	

When	the	actions	and	states	are	discrete,	for	Q	learning	to	converge	
to	the	true	Q	function,	we	must	
	
•  A.	Visit	every	state	and	try	every	action	in	each	state	
•  B.	Perform	at	least	20,000	iterations.	(No:	this	depends	on	the	
particular	problem).	

•  C.	Re-start	with	different	random	initial	table	values.	(No:	this	is	
not	necessary	in	general).	

•  D.	Prioritize	exploitation	over	exploration.	(No:	insufficient	
exploration	means	potentially	unupdated	state	action	pairs)	

Thanks Everyone!

Some	of	the	slides	in	these	lectures	have	been	adapted/borrowed	from	materials	developed	by	Mark	Craven,	
David	Page,	Jude	Shavlik,	Tom	Mitchell,	Nina	Balcan,	Elad	Hazan,	Tom	Dietterich,	Pedro	Domingos,	Jerry	Zhu,	
Yingyu	Liang,	Volodymyr	Kuleshov		

