I G AT TN e TERaT

gy 3-8 -

S 760: Machine Learning
Reinforcement Learning |

Kirthi Kandasamy

University of Wisconsin-Madison
Apr 12/17, 2023

Announcements

*Homework 7 (last HW) is out, due on May 1.

Outline

*Introduction to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

*Valuing and Obtaining Policies

*VValue functions, Bellman equation, value iteration, policy
iteration

*Q Learning
*Q function, Q-learning, SARSA, approximation

Outline

*Introduction to Reinforcement Learning
*Basic concepts, mathematical formulation, MDPs, policies

A General Model

We have an agent interacting with the world

% |
Actions
<€
Observations
Agent
*Agent receives a reward based on state of the world

* Goal: maximize reward / utility (SSS)

* Note: data consists of actions & observations
* Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

Google DeepMind §§3 AlphaGo Policy network Value network
Challenge Match

8 - 15 March 2016

o, ls) /o (S)

T

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

DON Rewards

0,04
0.02|

Input [
0.00|
-0.02|

i
~0.04|

ﬂlmage convolutions

Hidden layers

2004 =002 000 002 008
Timestep

Game controller action values

Output QValues
— Action O

w—Action 1

—— Action 2

Action 3

m— Action 4

e ACUON 5

Mnih et al, “Human-level control through deep reinforcement learning”

02 04 06 08 10
Timestep

A. Nielsen

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Dimensions

TORCS
3D Minecraft
ViZDoom
DM Lab
ALE
2D

Montezuma’s
Revenge

Single-agent

N5
Quake 111 i/\
Arena CTF e g
v
StarCraft
Dota2
Number of
_ agents
Multi-agent

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "

Building a formal model

Basic setup: (=) _ g
*Set of actions A ront Observations

*Information: at time t, observe state s, € S. Get reward r,
*Agent makes choice a, € A. State changes to s,,, continue

Goal: find a map from states to actions maximize rewards.

f

A “policy”

Markov Decision Process (MDP)

*State set S. Initial state s, Action set A

*State transition model: P(s;,1|s¢,)

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.
* More generally: P(r,,{, Si.1 | Sp, @)

*Reward function: r(s,)
*Policy: 7(s) : S — A action to take at a particular state.

ao a1 a9
Sop —> 81 —=> SS9 —> ...

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

i@i

r(s) = —0.04 for every non-
®) terminal state

Grid World Abstraction

Note: (i) Robot is unreliable

1 START

(ii)) Reach target fast

0.8

0.1+0.1

rs) = —0.04 fOr every non-
terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

rs) = —0.04 fOr every non-
1 2 3 4 terminal state

Back to MDP Setup

The formal mathematical model:

*State set S. Initial state s, Action set A

*State transition model: P(s;11|s¢, ()

* Markov assumption: transition probability only depends on s, and a,, and
not previous actions or states.

How do we find
*Reward function: r(s,) / tho best policy?

*Policy: m(s): S — Aaction to take at a particular state.

ao a1 a9
Sop —> S1 —> S9 — ...

Break & Quiz

Break & Quiz

Which of the following statement about MDP is not true?

* A. The reward function must output a scalar value
* B. The policy maps states to actions

e C. The probability of next state can depend on current and
previous states

Break & Quiz

Which of the following statement about MDP is not true?

* A. The reward function must output a scalar value
* B. The policy maps states to actions

* C. The probability of next state can depend on current and
previous states

Break & Quiz

Which of the following statement about MDP is not true?

e A. The reward function must output a scalar value (True)

* B. The policy maps states to actions (True: a policy tells you
what action to take for each state (Although it could map to
a distribution over actions as well)).

* C. The probability of next state can depend on current and
previous states (False: Markov assumption).

Outline

*Valuing and Obtaining Policies

*VValue functions, Bellman equation, value iteration, policy
iteration

Values & Policies

For policy m, the value starting from produced by
following that policy:

VT (sp) = 2 P (sequence)U(sequence)

sequences (St,at,I't,St+1)
starting from s,

U(sequence): sum of rewards when following a sequence
Value: Expected sum of rewards when starting from a state
Called the value function (for)

Values & Polices: Discounting Rewards

|f each sequence is finite and the reward at each state is
bounded, the value of a policy is also bounded.

*But if it is an infinite series, we usually discount rewards,

U(s0,51--) = 1(s0) +77(s1) + 777 (= 4'r(s)

t>0

*Discount factor y between O and 1
*Set according to how important present is VS future
*Has to be less than 1 for convergence

Quiz: Find the value of this policy from all states

Deterministic transitions, y=0.8, policy shown in red arrow.

Finding the value of a policy: the Bellman Equation

V7(s) = r(s) +v)_ P(s'|s,m(s))V7(s")

T u Y)

Discounted expected future
rewards

Current state
reward

Proof: (see board)

* Richard Bellman: inventor of dynamic programming

Value Iteration using the Bellman equation

How do we find V™ (s)?

*Know: reward r(s), transition probability P(s’|s,a)

Initialize some value function V™ (s) (typically V" (s) =0).
Then, update

ir1(8) < r(s) +7 Z P(s'|s,m(s))Vi"(s')

Quiz: Find value of this policy using the Bellman
equation

Deterministic transitions, y=0.8, policy shown in red arrow.

Obtaining the optimal policy

Now that V7 is defined for all policies, how do we define
the optimal policy?

*First, set V'(s) to be expected utility for optimal policy 7~ from s.
(That is, V'(s) = V™ (s) > V*(s) for all other policies 7.)

*What is the expected utility of a in state s? That is, what is the
best you could hope to do, after taking action a in state s.

ZP(S’\S, a)V*(s')

A N

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

We know the expected utility of an action.
*So, to get the optimal policy, compute

7" (s) = argmax, ZP "|s,a)V*(s

o/ /

All the states we Transition Expected :\‘
. A s
could go to probability rewards

Credit L. Lazbenik

Obtaining the optimal policy

Now we can obtain the optimal policy via,
7 (s) = argmax,, Z P(s'|s,a)V*(s")

So we need to know V(s).
*But it was defined in terms of the optimal policy!

So we need some other approach to get V(s).
*Need some other property of the value function!

Bellman Equation (for the optimal policy)

V*(s) =1r(s) + vmngP(sl\s, a)V*(s")

1 L Y)

current state Discounted expected
reward future rewards

Bellman Equation

Let us walk over one step for the value function:

V*(s)=r(s)+7 max Z P(s's,a)V*(s")

1 \SY)

Current state Discounted expected
reward future rewards

-
A s

Credit L. Lazbenik

The Bellman equation

Agent receives reward

. A “A
Environment returns ‘ S,

* Define state utility V'(s’) as the expected sum of
discounted rewards if the agent executes an optimal
policy starting in state s’

Image source: L. Lazbenik

The Bellman equation

Agent receives reward

\\A
. b}
Environment returns A S

* What is the expected utility of taking action a in
state s?

Z P(s'|s,a)V*(s"

Image source: L. Lazbenik

The Bellman equation

Agent receives reward

\\A
. b}
Environment returns A S

* How do we choose the action?

n*(s) = arg max, Z P(s'|s,a)V*(s")
S,

Image source: L. Lazbenik

The Bellman equation

Agent receives reward

\\A
. b}
Environment returns A S

e What is the recursive expression for V*(s) in terms
of V*(s") - the utilities of its successors?

V*(s) =1r(s) + yz P(s'|s,m*(s))V*(s")

Image source: L. Lazbenik

The Bellman equation

Agent receives reward

\\A
. b}
Environment returns A S

* How do we choose the action?

n*(s) = arg max, Z P(s'|s,a)V*(s")
S,

Image source: L. Lazbenik

The Bellman equation

Agent receives reward

\\A
. b}
Environment returns A S

¢ What is the recursive expression for V*(s) in terms
of V*(s") - the utilities of its successors?

V*(s) = r(s) + y max, Z P(s'|s,a)V*(s")

Image source: L. Lazbenik

Value Iteration to find optimal value function

Q: how do we find V*(s)?

*Why? Can use it to get the best policy

*Know: reward r(s), transition probability P(s’|s,a)

Also know V(s) satisfies Bellman equation (recursion above)

A: Use Bellman Equation. Start with V,(s)=0. Then,
update

Viaa(5) = (s) +ymax 3 P(s'ls, a)Vi(s)

Value lteration: Demo

[E ReINFORCEs: Gridworld with Dy X =+

€ C @ csstanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

B Apps @ cCS760Fall 2021 () phylogenetic-trees-.. €8 Projection of point...

@ Unsupervised Learn...

M Label Verbalization...

W Asymptotic Normal...

GridWorld: Dynamic Programming Demo

i Policy Evaluation (one sweep) Policy Update ‘ ‘ Toggle Value Iteration Reset
022 |025 Jo27 031 [034 [038 |034 031 (034 038
5 g v l5g g 1 9 ne g 1
025 |027 031 034 [038 [042]0.38 034 (038 [0.42
o.2¥ 046 | 0.46
020 |022 |o25 [-0.78 052 |057 |oe64 |057 [0.52
> fag 1 9 71 =* 1 3 |1
R-1.0
022 |025 |027 [0.25 0.08 [-036 |0.71 064 [057
—_ — -
FlLELL]T ..l B
025 |02z |03t |oon 1.22 0.08 079 |-0.29 0.5f
— —
r r. l ‘1 R1.0 R-1.0 1 R-1.0
027 [031]0.34 |0.31 1.0}3 097 o5z |-021 |o57
— — -« —
r F 1 : R-1.0 l
031 |034]0.38 [-058 - -o4q3 -0.1‘3 0.7P 071 |0.64
— -
v . l R-1.l = R0 R-1.0
034 [038 |0.42 |046 [052 |057 |oe64 |o. 064 |05
0311_. o.3€. 0.3& 0.4@_. 0.4& 0.5& 0.5{. 0.6? og 03

Cell reward: (select a

Setup

This is a toy environment called Gridworld that is often used as a toy model in the Reinforcement Learning

cell)

literature. In this particular case:

o

O X

e x @ :

»

E

Reading list

a

Source: Karpathy

Policy Iteration

With value iteration, we estimate V*
*Then get policy (i.e., indirect estimate of policy)

*Could also try to get policies directly

*This is policy iteration. Basic idea:
e Start with random policy it
* Use it to compute value function V™ (for that policy)
* Improve the policy: obtain i’

Policy Iteration: Algorithm

Policy iteration. Algorithm
e Start with random policy it
* Use it to compute value function V™ : a set of linear equations

V™(s) =7(s)+v > P(s'|s,a)V7(s')
* Improve the policy: obtain i’

7' (s) = arg max r(s) + ’yz P(s'|s,a)VT(s')

* Repeat

Break & Quiz

Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A)
=1, r(B) = 0. Let y be the discounting factor. Let i: n(A) = n(B) = move (i.e.,
an “always move” policy). What is the value function V™®(A)?

* A0

* B.1/(1-y)
+ C.1/(1-y?)
- D.1

Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A)
=1, r(B) = 0. Let ybe the discounting factor. Let i: n(A) = n(B) = move (i.e., an
“always move” policy). What is the value function V®(A)?

¢ A.0
* B.1/(1-y)

* C.1/(1-y?)
e D. 1

Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A)
=1, r(B) = 0. Let ybe the discounting factor. Let i: n(A) = n(B) = move (i.e., an
“always move” policy). What is the value function V®(A)?

e A.O

* B.1/(1-y)

* C.1/(1-y?) (States: A,B,A,B, ... rewards 1,0, ¥2,0, 4,0, ...)
e D. 1

Outline

*Q Learning
*Q function, Q-learning, SARSA, approximation

Planning vs Learning

So far we have assumed that the transition probability
P(s’|s,a) is known?

What if it is unknown?

Q-function (Action value function)

Q(s,a) tells us the value of doing action a in state s.

Q(s,a) =7(s) + WZ P(s'|s,a)V7(s')
=r(s)+ Z’ P(s'|s, a) max Q(s',a")

Note: V(s) = max_ Q(s,a)

Now, we can just do #(s) = argmax_ Q(s,a)

Learning the Q-function

What is wrong with the following strategy?
- Initialize Qq4(s,a) = 0 for all states and actions. Then,

Qii1(s,a) < r(s) + Z P(s'|s,a) max Q;(s',a’)
Sl
The transition probabilities P(s’|s,a) are unknown!

Instead, use monte-carlo approximations (i.e from data) by
observing that _ -

Q(s,a) =r(s) + 7YEg |max Q(S',a')s,a

Q-Learning

Offline setting: Estimating Q(s,a) from a given dataset
(i.e sequences of the form s, a,, s;, a;, S5, @5, ...).

*|terative procedure
Q(5¢,ar) < Q(8¢,ar) + afr(se) + WmC?XQ(StJrla a) — Q(s¢, at)]

Learning rate

Idea: combine old value and new estimate of future value.

Q-Learning: Making decisions while learning

Online setting: Make decisions while simultaneously learning.
* Make good decisions from the partially learned Q function
e But also update the Q function based on new data

*Update rule (the same)

Q(5t, at) < Q(s¢,a¢) + a|r(se) + ymgx Q(St+1,0) — Q(s¢, ay))

* But what action do you choose on round t? Can you always
simply choose:

a; = argmax Q;_1(s, a)
a

Exploration Vs. Exploitation

* Exploration: take an action with unknown consequences

*Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

*Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

* Pros:

* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

*Cons:
* Might also prevent you from discovering the true optimal strategy

Q-Learning: Epsilon-Greedy Policy

How to explore?

*With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax, . 4 @(s,a) uniform(0,1) > e
a —
random a € A otherwise

Q-Learning: SARSA

An alternative:
*Just use the next action in the update rule, no max over actions:

Q(St, Clt) — Q(St,@t) + 04[(3t> + WQ<3t+1,&t+1) — Q(St, Clt)]

Learning rate

Called state—action—reward—state—action (SARSA)
*Can use with epsilon-greedy policy

Q-Learning Details

We have assumed known deterministic rewards so far r(s). Q-
Learning works even if rewards are unknown and/or stochastic

“Model-free”: we do not try to estimate transitions P(s’|s,a).

Note: if we have a terminal state, the process ends

* An episode: a sequence of states ending at a terminal state
*Want to run on many episodes

Slightly different Q-update for terminal states

Q-Learning — Compact Representations

Q-table can be quite large... might not even fit memory

*Solution: use some other representation for a more compact
version. E.g: neural networks.

encoding of
the state (s)

each input unit encodes a or could have one net for
property of the state (e.g., each possible action
a sensor value)

Deep Q-Learning

How do we get Q(s,a)?

Convolution Convolution Fully connected Fully connected
v v v A

¢

[
-D
O

o
apaggg
L S I R B L I L I D R I I R IR O

L DL I B D B o I I I B I B B 2
L L I I I O I I I R I R I I B B

a-t-K(-zies-f A‘* e % _)'
(0] (0] (o] (o] (o] (o] (o] (@] g

Mnih et al, "Human-level control through deep reinforcement learning"

Break & Quiz

When the actions and states are discrete, for Q learning to
converge to the true Q function, we must

* A. Visit every state and try every action in each state
e B. Perform at least 20,000 iterations.

e C. Re-start with different random initial table values.

* D. Prioritize exploitation over exploration.

Break & Quiz

When the actions and states are discrete, for Q learning to
converge to the true Q function, we must

* A. Visit every state and try every action in each state
e B. Perform at least 20,000 iterations.

e C. Re-start with different random initial table values.

* D. Prioritize exploitation over exploration.

Break & Quiz

When the actions and states are discrete, for Q learning to converge
to the true Q function, we must

* A. Visit every state and try every action in each state

e B. Perform at least 20,000 iterations. (No: this depends on the
particular problem).

e C. Re-start with different random initial table values. (No: this is
not necessary in general).

e D. Prioritize exploitation over exploration. (No: insufficient
exploration means potentially unupdated state action pairs)

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov

