
CS 760: Machine Learning
Reinforcement Learning II

Kirthi	Kandasamy	
	

University	of	Wisconsin-Madison	
	

April	17,	2023	

Announcements	

• 	HW7	(last	HW)	is	out,	due	on	May	1.			

Outline	

• Function	Approximation	
• Value	&	Q-function	approximations,	linear,	nonlinear	

• Policy-based	RL	
• Policy	gradient,	policy	gradient	theorem,	REINFORCE	
algorithm	

Outline	

• Function	Approximation	
• Value	&	Q-function	approximations	

• Policy-based	RL	
• Policy	gradient,	policy	gradient	theorem,	REINFORCE	
algorithm	

Beyond	Tables	

So	far:	
• 	Represent	everything	with	a	table	

• Value	function	V:	table	size		

• Q	function:	table	size	

• Too	big	to	store	in	memory	for	many	tasks	
• Backgammon:	1020	states.	Go:	3361	states	
• Need	some	other	approach	

	
	
	
	
	

	
	
	

Beyond	Tables:	Function	Approximation	

Both	V	and	Q	are	functions…		
• 	Can	approximate	them	with	models,	ie,	neural	
networks	

• 	So	we	write	
		
• New	goal:	find	the	weights	
• Loss	function:		
	

	
	
	

State	Representations	&	Models	

How	do	we	represent	a	state?		
• As	usual,	feature	vectors,	i.e.,	

• E.g	Linear	models:	
	
	
	
	
	

	
	
	

Linear	VFA	With	an	Oracle	

• SGD	update	(change)	to	current	estimate	is	is	

• For	linear	models,	we	get		

	
	
	
	
	

	
	
	

Step	Size	 Prediction	Error	 Feature	Value	

What	if	We	Don’t	Have	an	Oracle?	

Use	Monte-Carlo!	
• We	won’t	know	

• Run	the	policy	to	obtain	rewards:		

• Can	just	run	episodes	and	estimate,	ie,	get	some	noisy	
estimates.	Data:	

	
	
	
	
	

	
	
	

Q-Function	Approximation	

Similar	idea	for	Q-function	
	
	
	
Representation:	use	both	states	and	values	
• Can	still	use	linear	models	
• Note:	quite	popular	to	use	deep	models	

	
	
	
	
	

	
	
	

Q-Function	Approximation:	Deep	Models	

• Note:	quite	popular	to	use	deep	models	
• E.g.,	CNNs	if	the	states	are	images	(e.g:	video	games)	

	
	
	
	
	

	
	
	

Mnih	et	al,	"Human-level	control	through	deep	reinforcement	learning"	

Outline	

• Function	Approximation	
• Value	&	Q-function	approximations,	linear,	nonlinear	

• Policy-based	RL	
• Policy	gradient,	policy	gradient	theorem,	REINFORCE	
algorithm	

Policy-Based	RL	

So	far,	we	either	approximated	V	or	Q	
• Then	use	these	to	extract	the	optimal	policy	

But	we	can	directly	model	and	update	the	policy	
• Note:	so	far	our	policies	were	deterministic,	now	we’ll	
allow	a	distribution	over	actions,	ie,		

	
	
	
	
	

	
	
	

Policy	Gradient	

Use	the	same	idea.	We’ll	define	an	objective		
• 	And	then	can	get	gradients:	

	

	
	
	
	
	

	
	
	

Score	Function	

Policy	Gradient	

Set	our	objective	to	be	

	
• Compute	the	gradient	via	the	policy	gradient	theorem	

	
	
	
	
	

	
	
	

Stationary	
distribution	

REINFORCE	Algorithm	

So,	to	learn	a	policy,	we	can	run	SGD	(actually	ascent)	
• Compute	gradients	via	policy	gradient	theorem	

• Just	need																				estimates.	
• How?	Monte-Carlo	again:	Use	Gt	for	our	estimates.	

	

	
	
	
	
	

	
	
	

Thanks Everyone!

Some	of	the	slides	in	these	lectures	have	been	adapted/borrowed	from	materials	developed	by	Mark	Craven,	
David	Page,	Jude	Shavlik,	Tom	Mitchell,	Nina	Balcan,	Elad	Hazan,	Tom	Dietterich,	Pedro	Domingos,	Jerry	Zhu,	
Yingyu	Liang,	Volodymyr	Kuleshov,	David	Silver,	Emma	Brunskill	

