

CS 760: Machine Learning Large Language Models

Kirthi Kandasamy

University of Wisconsin-Madison

May 1, 2023

Announcements

Course evaluations

- •33 have already filled out. Thank you!
- Please fill out if you haven't already
- Homework 7 was due this morning

• Finals

- •5/12/2023, Friday 7:45am 9:45am
- MICROBIAL SCIENCES BLDG 1520

Outline

Language Models & NLP

•RNNs, word embeddings, attention

Transformer Model

• Properties, architecture breakdown

Transformer-based Models

• BERT, GPTs, Foundation Models

Outline

Language Models & NLP RNNs, word embeddings, attention Transformer Model Properties, architecture breakdown

Transformer-based Models

• BERT, GPTs, Foundation Models

Language Models: Word Embeddings

- •One way to encode words: one-hot vectors
 - Want something smarter...

Distributional semantics: account for relationships

 Representations should be close/similar to other words that appear in a similar context

Dense vectors:

dog =
$$\begin{bmatrix} 0.13 & 0.87 & -0.23 & 0.46 & 0.87 & -0.31 \end{bmatrix}^T$$

cat = $\begin{bmatrix} 0.07 & 1.03 & -0.43 & -0.21 & 1.11 & -0.34 \end{bmatrix}^T$

AKA word embeddings

Training Word Embeddings

Many approaches (very popular 2010-present)

- •Word2vec: a famous approach
- •Write out a likelihood

 $L(\theta) = \prod_{t=1}^{T} \prod_{-a \le j \le a} P(w_{t+j}|w_t, \theta)$ Our word vectors (weights) All positions

Training Word Embeddings

Word2vec likelihood
$$L(\theta) = \prod_{t=1}^{T} \prod_{-a \le j \le a} P(w_{t+j}|w_t, \theta)$$

•Expression for the probability:

$$P(w'|w,\theta) = \frac{\exp((\theta_{w',o})^{\mathsf{T}}\theta_{w,c})}{\sum_{v \in V} \exp((\theta_{v,o})^{\mathsf{T}}\theta_{w,c})}$$

• $\theta_{w,o}$: occurrence vector for word w• $\theta_{w,c}$: context vector for word w

Language Models: RNN Review

•Classical RNN model / Encoder-Decoder variant:

Language Models: LSTM Review

•Long Short-Term Memory: deals with problem. Cell:

Language Models: Attention

- •One challenge: dealing with the hidden state
 - Everything gets compressed there
 - Might lose information
- •Solution: attention mechanism
 - Similar to residual connections in ResNets!

Language Models: Putting it All Together

- •Before 2017: best language models
 - Use encoder/decoder architectures based on RNNs
 - Use word embeddings for word representations

Outline

Language Models & NLP k-gram models, RNN review, word embeddings, attention

Transformer Model

• Properties, architecture breakdown

Transformer-based Models

• BERT, GPTs, Foundation Models

Transformers: Idea

- Initial goal for an architecture: encoder-decoder
 - Get rid of recurrence
 - Replace with **self-attention**

Vaswani et al. '17

Transformers: Architecture

- •Sequence-sequence model with **stacked** encoders/decoders:
 - For example, for French-English translation:

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Transformers: Architecture

- •Sequence-sequence model with **stacked** encoders/decoders:
 - What's inside each encoder/decoder unit?

Transformers: Inside an Encoder

- •Let's take a look at the encoder. Two components:
 - 1. Self-attention layer
 - •2. Feedforward nets

Transformers: Self-Attention

Self-attention is the key layer in a transformer stack
Get 3 vectors for each embedding: Query, Key, Value

Transformers: Self-Attention

- •Self-attention is the key layer in a transformer stack
 - Illustration. Recall the three vectors for each embedding: Query, Key, Value
 - The sum values are the outputs of the self-attention layer
 - Send these to feedforward NNs
- Highly parallelizable!

Transformers: Multi-Headed Attention

- •We can do this multiple times in parallel
 - Called multiple heads
 - Need to combine the resulting output sums

Transformers: Attention Visualization

- •Attention tells us where to focus the information
 - Illustration for a sentence:

Transformers: Positional Encodings

- •One thing we haven't discussed: the order of the symbols/ elements in the sequence
 - Add a vector containing a special positional formula's embedding

Transformers: More Tricks

- •Recall a big innovation for ResNets: residual connections
 - And also layer normalizations
 - Apply to our encoder layers

Transformers: Decoder

- Similar to encoders (see blog post for more details).
- E.g. Generating a translation

Transformers: Putting it All Together

•What does the full architecture look like?

Outline

Language Models & NLP

 k-gram models, RNN review, word embeddings, attention

 Transformer Model

 Properties, architecture breakdown

Transformer-based Models

• BERT, GPTs, Foundation Models

Transformer-Based Models: **BERT**

- Semi-supervised learning + Transformers
 - •Semi-supervised learning to learn embeddings in encoder

BERT: Concepts

- •What makes BERT work? A bunch of ideas:
 - •1. Use the **Transformer** architecture
 - •2. Pre-training on corpora using pretext tasks
 - Then fine-tune for a particular task
 - •3. Scale: BERT-Large has 340 million parameters

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Results: Devlin et al, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT: Training

- •BERT is trained on a simple tasks on a huge amount of data:
 - Recall our pretext tasks in self-supervised learning
 - Masked word prediction:

BERT: Classification

- •Then, fine-tune on a particular task
 - Example: binary classification, spam VS not spam

GPT Series of Models

•GPT: Generative Pre-trained Transformer

- Also built on top of transformer model architecture
- Essentially the decoder part only
- •Goal: generate text (possibly from a prompt)
- •Scale: huge!
 - GPT-3: 175 billion parameters

Codex

- •Codex: a variant of GPT-3 based on source code
 - Outputs code. Ex: show primes

poperari and restriction compete	Control Conditional
Tust Course: 42 Primae: 2, 3, 5, 7, 11, 13, 17, 16, 25, 29, 31, 17, 43, Fineste 4, 4, 10, 14, 27, 36, 34, 33, 46, 56, 67, 74, 87,	generated_code.je w bot = former(.treate(term Cital) test.inver(BL + (bot)) test.inver(BL + (bot))
	we count to 42 and then text for prime and grigh prime is 2×1 Since $x \ge 1 \times 1$ Since $x \ge 1$ Since $x $
	<pre>wif Litteragi = Wifiteradi Tantilici) { sectors controls.conterfTML = Control + count if lower = u = { closetObles.conterfTML = Control + count if lower = u = { closetObles.conterfTML = Control + count if lower = u = { closetObles.conterfTML = Control + count if lower = u = { closetObles.conterfTML = Control + {</pre>
Provide instructions.	1, 1966); 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	ter for 1 = 2; 3 < n 3 - 0 { If If If

DALL-E

•Create images from text

• Prompt: "an armchair in the shape of an avocado. . . ."

https://openai.com/blog/dall-e/

• Note: several online demos. Try it yourself!

Foundation Models

- •Many more large scale models
 - Not just focused on text

Bommasani et al, "On the Opportunities and Risks of Foundation Models"

Conclusion

- "Foundation" models based on transformers and beyond
 - Huge, expensive to train, challenging in various ways... but
 - Remarkably powerful for a vast number of tasks.
 - AGI??

Bommasani et al. "On the Opportunities and Risks of Foundation Models"

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Jay Alammar, and Fred Sala