

CS 760: Machine Learning Supervised Learning I

Kirthi Kandasamy

University of Wisconsin-Madison

2/1/2023

Announcements

•Announcement:

- HW 1 extended:
 - Primarily because many students got off the waitlist only yesterday/today.
 - If you have already completed it, you can start on homework 2.
- HW 2 will be released by Friday (possibly sooner)
 - Due on Wednesday Feb 15 at 10am.
 - Covers topics we are yet to cover. But you can start on some questions already!

Outline

Review from last time

• Features, labels, hypothesis class, training, generalization

Instance-based learning

•k-NN classification/regression, locally weighted regression, strengths & weaknesses, inductive bias

Decision trees

 Setup, splits, learning, information gain, strengths and weaknesses

Outline

Review from last time

• Features, labels, hypothesis class, training, generalization

Instance-based learning

•k-NN classification/regression, locally weighted regression, strengths & weaknesses, inductive bias

Decision trees

• Setup, splits, learning, information gain, strengths and weaknesses

Supervised Learning: Formal Setup

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

$$f: \mathcal{X} \to \mathcal{Y}$$

• Set of *models* (a.k.a. *hypotheses*):

$$\mathcal{H} = \{h|h: \mathcal{X} \to \mathcal{Y}\}$$

Get

• Training set of instances for unknown target function, where $y^{(i)} \approx f(x^{(i)})$

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$$

safe

poisonous

safe

Supervised Learning: Objects

Three types of sets

• Input space, output space, hypothesis class

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- •Examples:
 - Input space: feature vectors $\mathcal{X} \subset \mathbb{R}^d$

- Output space:
 - Binary

$$\mathcal{Y} = \{-1, +1\}$$

safe poisonous

Continuous

$$\mathcal{Y}\subseteq\mathbb{R}$$

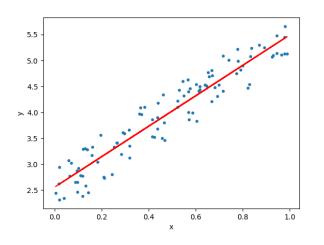
 13.23°

Output space: Classification vs. Regression

Choices of ${\mathcal Y}$ have special names:

- •Discrete: "classification". The elements of ${\mathcal Y}$ are classes
 - Note: doesn't have to be binary

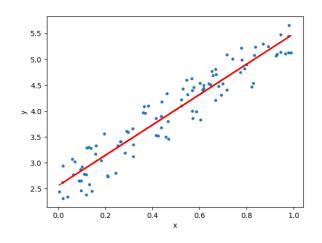
- Continuous: "regression"
 - Example: linear regression
- There are other types...



Hypothesis class

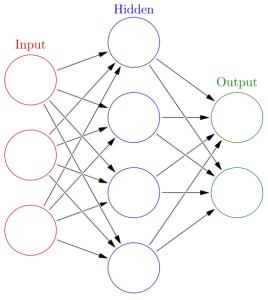
• Pick specific class of models. Ex: linear models:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d$$



•Ex: feedforward neural networks

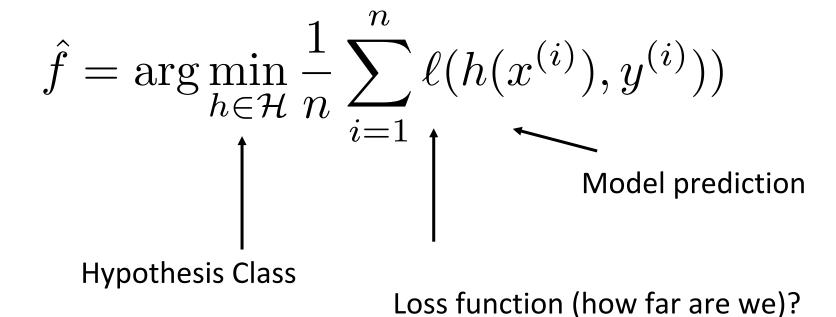
$$f^{(k)}(x) = \sigma(W_k^T f^{(k-1)}(x))$$



Supervised Learning: Training & Generalization

Goal: model *h* that best approximates *f*

One way: empirical risk minimization (ERM)



- Recall: we want to generalize.
 - Do well on future (test) data points, not just on training data.

Break & Questions

Outline

Review from last time

• Features, labels, hypothesis class, training, generalization

Instance-based learning

•k-NN classification/regression, locally weighted regression, strengths & weaknesses, inductive bias

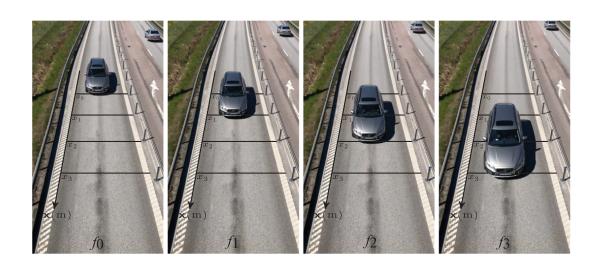
Decision trees

• Setup, splits, learning, information gain, strengths and weaknesses

Nearest Neighbors: Idea

Basic idea: "nearby" feature vectors more likely have the same label

- Example: classify car/no car
 - All features same, except location of car
- •What does "nearby" mean?



1-Nearest Neighbors: Algorithm

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for \boldsymbol{x} , find nearest training point $\,\boldsymbol{x}^{(j)}$ Return $\boldsymbol{y}^{(j)}$

1-Nearest Neighbors: Algorithm

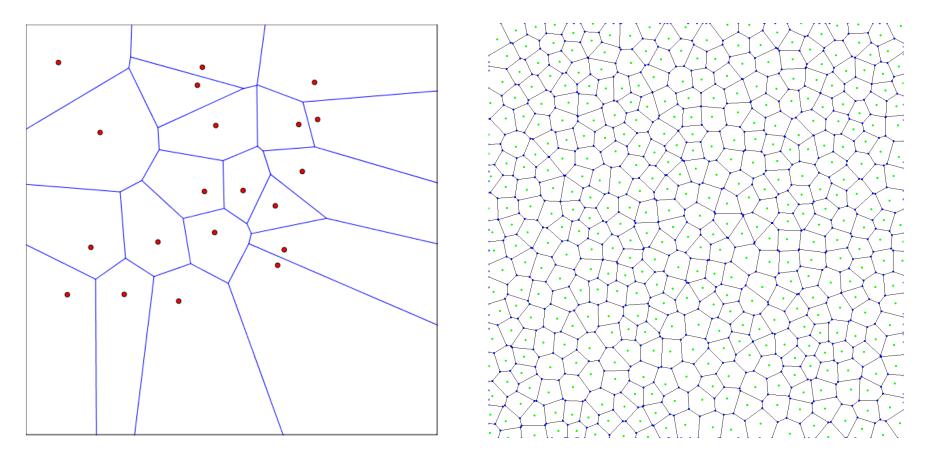
Training/learning: given

Prediction: for x , find nearest training point $x^{(j)}$ Return $\,y^{(j)}\,$ poisonous

1NN: Decision Regions

Defined by "Voronoi Diagram"

Each cell contains points closer to a particular training point



k-Nearest Neighbors: Classification

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for x , find k most similar training points

Return plurality class

$$\hat{y} = rg \max_{y \in \mathcal{Y}} \sum_{i=1}^n \mathbb{1}(y = y^{(i)})$$

•I.e., among the **k** points, output most popular class.

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

$$d_H(x^{(i)}, x^{(j)}) = \sum_{a=1}^{\infty} 1\{x_a^{(i)} \neq x_a^{(j)}\}\$$

Continuous features:

• Euclidean distance:

$$d(x^{(i)}, x^{(j)}) = \left(\sum_{a=1}^{d} (x_a^{(i)} - x_a^{(j)})^2\right)^{\frac{1}{2}}$$

•L1 (Manhattan) dist.:

$$d(x^{(i)}, x^{(j)}) = \sum_{a=1}^{a} |x_a^{(i)} - x_a^{(j)}|$$

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:

Compute empirical mean/stddev for a feature (in train set)

$$\mu_a = \frac{1}{n} \sum_{i=1}^n x_a^{(i)}$$
 $\sigma_a = \left(\frac{1}{n} \sum_{i=1}^n (x_a^{(i)} - \mu_i)^2\right)^{\frac{1}{2}}$

- Standardize features:
 - Do the same for test points!

$$\tilde{x}_a^{(j)} = \frac{x_a^{(j)} - \mu_a}{\sigma_a}$$

k-Nearest Neighbors: Mixed Distances

Might have features of both types

Sum two types of distances component

 Might need normalization, (e.g. normalize individual distances to maximum value of 1)

k-Nearest Neighbors: Regression

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for x, find k most similar training points

Return

$$\hat{y} = \frac{1}{k} \sum_{i=1}^{k} y^{(i)}$$

•I.e., among the **k** points, output mean label.

k-Nearest Neighbors: Variations

Could contribute to predictions via a weighted distance

- All k no longer equally contribute
- Classification / regression

$$\hat{y} \leftarrow \arg\max_{v \in \mathcal{Y}} \sum_{i=1}^{k} \frac{1}{d(x, x^{(i)})^2} \delta(v, y^{(i)})$$

$$\hat{y} \leftarrow \frac{\sum_{i=1}^{k} y^{(i)} / d(x, x^{(i)})^2}{\sum_{i=1}^{k} 1 / d(x, x^{(i)})^2}$$

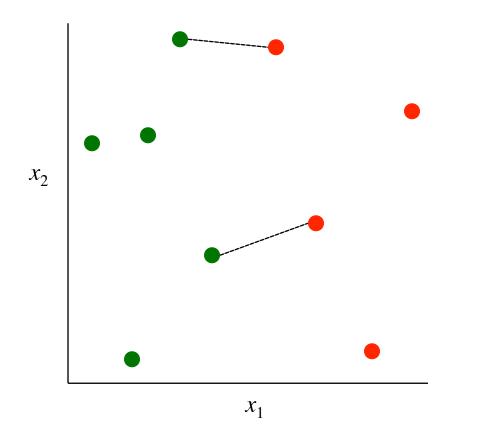
Dealing with Irrelevant Features

One relevant feature x_1

1-NN rule classifies each instance correctly

 x_1

Effect of an irrelevant feature x_2 on distances and nearest neighbors



Instance-Based Learning: Strengths & Weaknesses

Strengths

- Easy to explain predictions
- Simple to implement and conceptualize.
- No training!
- Often good in practice

Weaknesses

- Sensitive to irrelevant + correlated features
 - Can try to solve via variations. More later
- Prediction stage can be expensive
- No "model" to interpret

Inductive Bias

- Inductive bias: assumptions a learner uses to predict y_i for a previously unseen instance x_i
- Two components (mostly)
 - hypothesis space bias: determines the models that can be represented
 - preference bias: specifies a preference ordering within the space of models

learner	hypothesis space bias	preference bias
k-NN	Ddecomposition of space determined by nearest neighbors	instances in neighborhood belong to same class

Break & Quiz

Q2-1: Table shows all the training points in 2D space and their labels. Assume 3NN classifier and Euclidean distance. What should be the labels of the points A: (1, 1) and B(2, 1)?

1.	A:	+,	B:	_

- 2. A: -, B: +
- 3. A: -, B: -
- 4. A: +, B: +

x	У	label
0	0	+
1	0	+
2	0	+
2	2	+
0	1	-
0	2	-
1	2	-
3	1	_

Q2-2: In a distance-weighted nearest neighbor, which of the following weight is **NOT** appropriate? Let p be the test data point and x_i {i = 1: N} be training data points.

1.
$$w_i = d(p, x_i)^{1/2}$$

2.
$$w_i = d(p, x_i)^{-2}$$

$$w_i = \exp(-d(p, x_i))$$

4.
$$w_i = 1$$

Outline

Review from last time

• Features, labels, hypothesis class, training, generalization

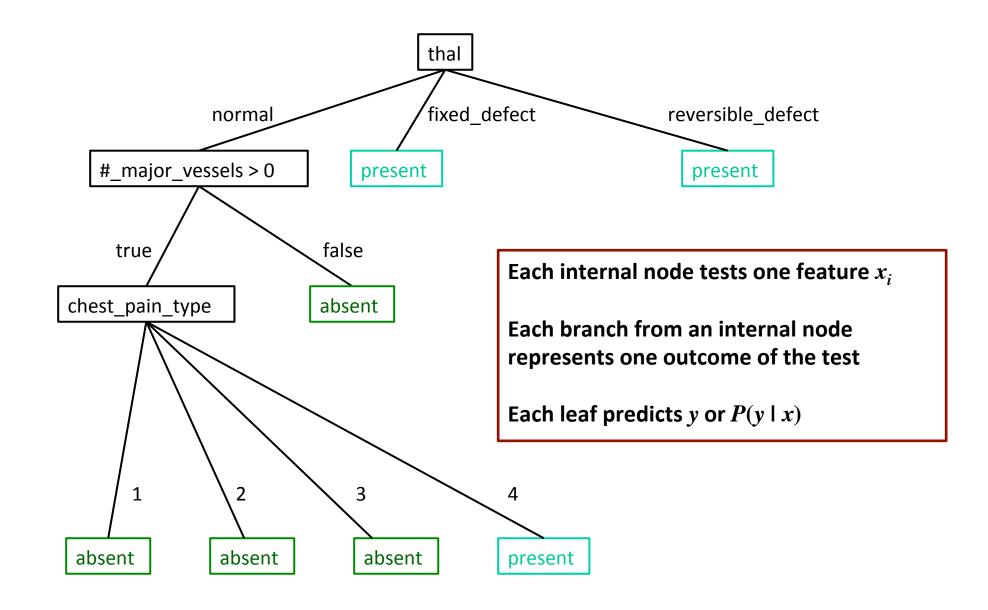
Instance-based learning

•k-NN classification/regression, locally weighted regression, strengths & weaknesses, inductive bias

Decision trees

 Setup, splits, learning, information gain, strengths and weaknesses

Decision Trees: Heart Disease Example



Decision Trees: Logical Formulas

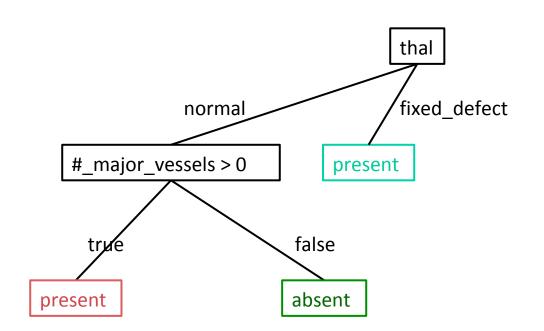
- Suppose $X_1 \dots X_5$ are Boolean features, and Y is also Boolean
 - How would you represent the following with decision trees?

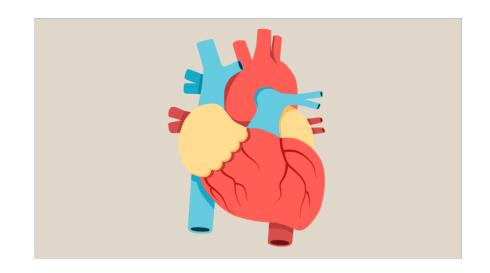
$$Y = X_2 X_5$$
 (i.e., $Y = X_2 \wedge X_5$)

$$Y = X_2 \vee X_5$$

$$Y = X_2 X_5 \vee X_3 \neg X_1$$

Decision Trees: Textual Description





```
thal = normal
    [#_major_vessels > 0] = true: present
    [#_major_vessels > 0] = false: absent
thal = fixed_defect: present
```

Decision Trees: Mushrooms Example

```
odor = a: e(400.0)
odor = c: p (192.0)
odor = f: p (2160.0)
odor = 1: e (400.0)
odor = m: p (36.0)
odor = n
   spore-print-color = b: e (48.0)
   spore-print-color = h: e (48.0)
   spore-print-color = k: e (1296.0)
   spore-print-color = n: e (1344.0)
   spore-print-color = o: e (48.0)
   spore-print-color = r: p (72.0)
   spore-print-color = u: e (0.0)
    spore-print-color = w
        qill-size = b: e (528.0)
        gill-size = n
            gill-spacing = c: p (32.0)
            gill-spacing = d: e (0.0)
            gill-spacing = w
                population = a: e(0.0)
                population = c: p (16.0)
                population = n: e(0.0)
                population = s: e(0.0)
                population = v: e (48.0)
                population = y: e (0.0)
   spore-print-color = y: e (48.0)
odor = p: p (256.0)
odor = s: p (576.0)
odor = v: p (576.0)
```

if odor=almond, predict edible

if odor=none ∧
 spore-print-color=white ∧
 gill-size=narrow ∧
 gill-spacing=crowded,
predict poisonous

Decision Trees: Learning

Learning Algorithm:

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria is met

make a leaf node N

determine class label for N

else

make an internal node N

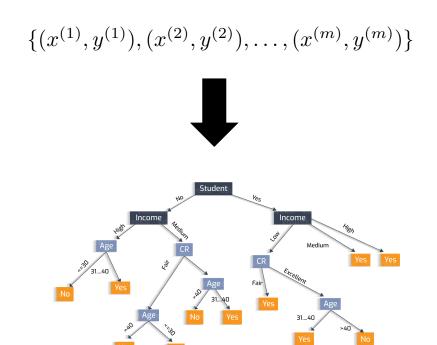
S = FindBestSplit(D, C)

for each group *k* of *S*

 D_k = subset of training data in group k

 k^{th} child of $N = MakeSubtree(D_k)$

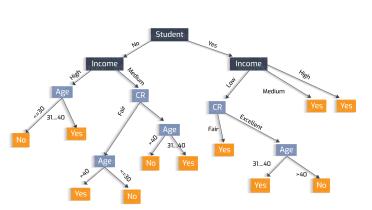
return subtree rooted at N



Decision Trees: Learning

• Learning Algorithm: MakeSubtree(set of training instances D)

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$



```
C = DetermineCandidateSplits(D)
```

if **stopping criteria** is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group k of S

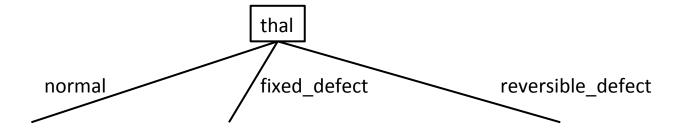
 D_k = subset of training data in group k k^{th} child of N = MakeSubtree(D_k)

return subtree rooted at N

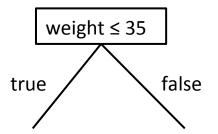
1. DT Learning: Candidate Splits

First, need to determine how to split features

•Splits on nominal features have one branch per value



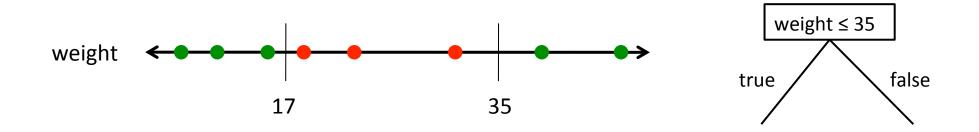
Splits on numeric features use a threshold/interval



DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature X_i

- •Sort the values of X_i in D
- Evaluate split thresholds in intervals between instances of different classes

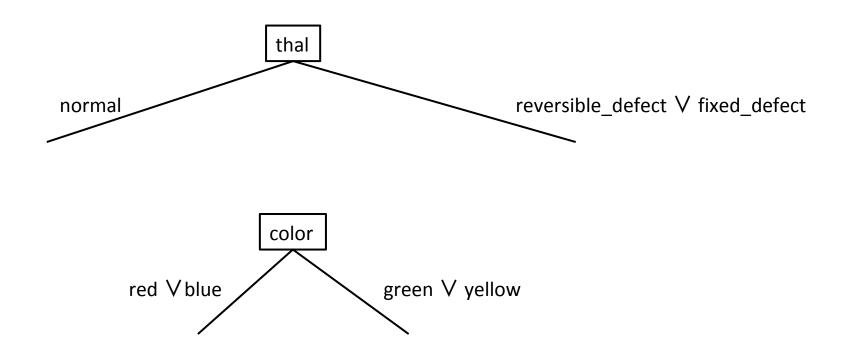


Numeric Feature Splits Algorithm

```
// Run this subroutine for each numeric feature at each node of DT induction
Determine Candidate Numeric Splits (set of training instances D, feature X_i)
   C = \{\}
                   // initialize set of candidate splits for feature X_i
    let v_i denote the value of X_i for the j^{th} data point
    sort the dataset using v_i as the key for each data point
   for each pair of adjacent v_i, v_{i+1} in the sorted order
          if the corresponding class labels are different
                    add candidate split X_i \le (v_i + v_{i+1})/2 to C
    return C
```

DT: Splits on Nominal Features

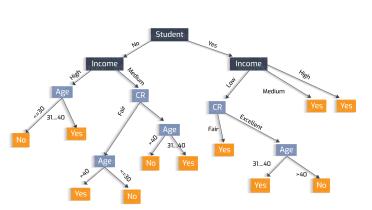
Instead of using k-way splits for k-valued features, could require binary splits on all nominal features (CART does this)



Decision Trees: Learning

• Learning Algorithm: MakeSubtree(set of training instances D)

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$



```
C = DetermineCandidateSplits(D)
```

if **stopping criteria** is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group k of S

 D_k = subset of training data in group k k^{th} child of N = MakeSubtree(D_k)

return subtree rooted at N

Decision tree Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

• **Hypothesis**: simplest tree that classifies the training instances accurately will generalize

Occam's razor

• "when you have two competing theories that make the same predictions, the simpler one is the better"

DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

• **Hypothesis**: simplest tree that classifies the training instances accurately will generalize

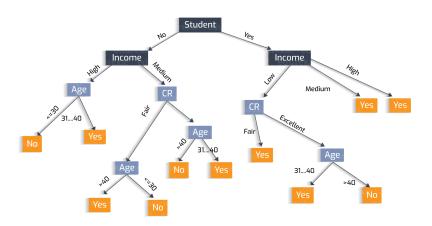
Why is Occam's razor a reasonable heuristic?

- There are fewer short models (i.e. small trees) than long ones
- A short model is unlikely to fit the training data well by chance
- A long model is more likely to fit the training data well coincidentally

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that accurately classifies the training set?

- NO! This is an NP-hard problem
 - [Hyafil & Rivest, Information Processing Letters, 1976]
- Instead, we'll use an information-theoretic heuristic to greedily choose splits



Information Theory: Super-Quick Intro

- •Goal: communicate information to a receiver in bits
- •Ex: as bikes go past, communicate the maker of each bike

Information Theory: Encoding

- Could send out the names of the manufacturers in binary coded ASCII
 - Suppose there are 4: Trek, Specialized, Cervelo, Serrota

•Inefficient... since there's just 4, we could encode them

• # of bits: 2 per communication

type	code	
Trek	11	
Specialized	10	
Cervelo	01	
Serrota	00	

Information Theory: Encoding

- Now, some bikes are rarer than others...
 - Cervelo is a rarer specialty bike.
 - We could **save some bits**... make more popular messages fewer bits, rarer ones more bits
 - Note: this is on average
- Expected # bits: **1.75**

$$-\sum_{y\in\mathcal{Y}}P(y)\log_2P(y)$$

Type/probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
P(Serrota) = 0.125	3	000

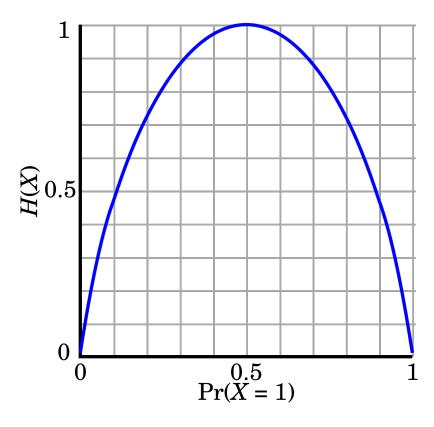
Information Theory: Entropy

Measure of uncertainty for random variables/distributions

• Expected number of bits required to communicate the value

of the variable

$$H(Y) = -\sum_{y \in \mathcal{Y}} P(y) \log_2 P(y)$$



Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y?

$$H(Y|X) = -\sum_{x \in \mathcal{X}} P(X = x)H(Y|X = x)$$

Here,

$$H(Y|X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y|X = x) \log_2 P(Y = y|X = x)$$

- What is it if Y=X?
- •What if Y is independent of X?

Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Y=Type/X=Color	Black	White
Trek	0.25	0.25
Specialized	0.125	0.125
Cervelo	0.125	0
Serrota	0	0.125

$$H(Y|X=black) = -0.5 log(0.5) - 0.25 log(0.25) - 0.25 log(0.25) - 0 = 1.5$$

 $H(Y|X=white) = -0.5 log(0.5) - 0.25 log(0.25) - 0 - 0.25 log(0.25) = 1.5$
 $H(Y|X) = 0.5 * H(Y|X=black) + 0.5 * H(Y|X=white) = 1.5$

Information Theory: Mutual Information

Similar comparison between R.V.s:

$$I(Y;X) = H(Y) - H(Y|X)$$

Interpretation:

- How much uncertainty of Y that X can reduce.
- •Or, how much information about Y can you glean by knowing X?

Y=Type/X=Color	Black	White
Trek	0.25	0.25
Specialized	0.125	0.125
Cervelo	0.125	0
Serrota	0	0.125

$$I(Y:X) = H(Y) - H(Y|X) = 1.75 - 1.5 = 0.25$$

DT Learning: Back to Splits

Want to choose split S that maximizes

InfoGain
$$(D, S) = H_D(Y) - H_D(Y|S)$$

ie, mutual information.

- Note: D denotes that this is the empirical entropy
 - We don't know the real distribution of Y, just have our dataset
- Equivalent to maximally reducing the entropy of Y conditioned on a split S

DT Learning: InfoGain Example

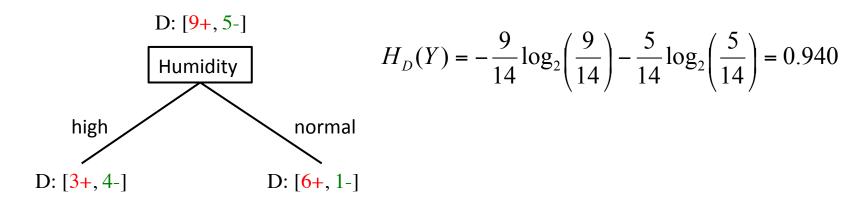
Simple binary classification (play tennis?) with 4 features.

PlayTennis: training examples

		0			
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

DT Learning: InfoGain For One Split

What is the information gain of splitting on Humidity?



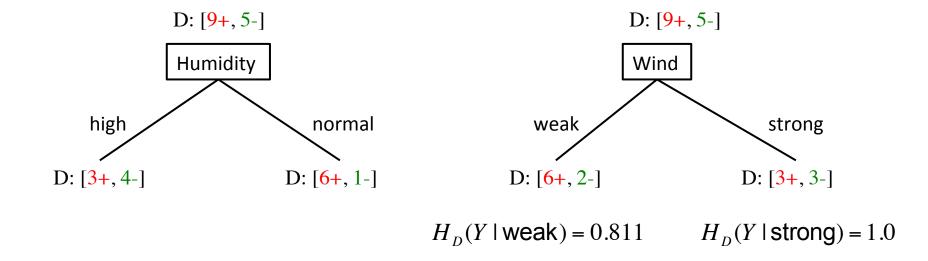
$$H_D(Y | \text{high}) = -\frac{3}{7} \log_2 \left(\frac{3}{7}\right) - \frac{4}{7} \log_2 \left(\frac{4}{7}\right) \quad H_D(Y | \text{normal}) = -\frac{6}{7} \log_2 \left(\frac{6}{7}\right) - \frac{1}{7} \log_2 \left(\frac{1}{7}\right)$$
$$= 0.592$$

InfoGain(D, Humidity) =
$$H_D(Y) - H_D(Y | \text{Humidity})$$

= $0.940 - \left[\frac{7}{14} (0.985) + \frac{7}{14} (0.592) \right]$
= 0.151

DT Learning: Comparing Split InfoGains

Is it better to split on Humidity or Wind?



InfoGain(D, Humidity) =
$$0.940 - \left[\frac{7}{14} (0.985) + \frac{7}{14} (0.592) \right]$$

= 0.151
InfoGain(D, Wind) = $0.940 - \left[\frac{8}{14} (0.811) + \frac{6}{14} (1.0) \right]$
= 0.048

DT Learning: InfoGain Limitations

- InfoGain is biased towards tests with many outcomes
 - Splitting on it results in many branches, each of which is "pure" (has instances of only one class)
 - In the extreme: A feature that uniquely identifies each instance
 - Maximal information gain!
- Use GainRatio: normalize information gain by entropy

GainRatio(D, S) =
$$\frac{\text{InfoGain}(D,S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

Homework: What is a good stopping criteria?

• Learning Algorithm: MakeSubtree(set of training instances D)

if **stopping criteria** is met

make a leaf node N

C = DetermineCandidateSplits(D)

determine class label for N

else

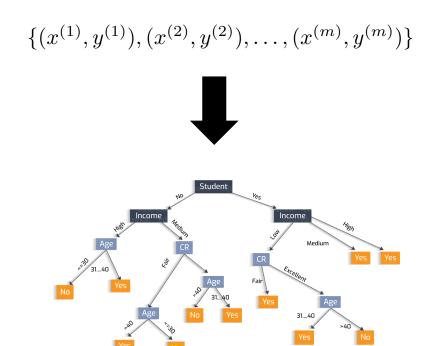
make an internal node N

S = FindBestSplit(D, C)

for each group *k* of *S*

 D_k = subset of training data in group k k^{th} child of N = MakeSubtree(D_k)

return subtree rooted at N



Inductive Bias

- Recall: *Inductive bias*: assumptions a learner uses to predict y_i for a previously unseen instance x_i
- Two components
 - hypothesis space bias: determines the models that can be represented
 - preference bias: specifies a preference ordering within the space of models

learner	hypothesis space bias	preference bias
Decision trees	trees with single-feature, axis-parallel splits	small trees identified by greedy search
k-NN	Decomposition of spce determined by nearest neighbors	instances in neighborhood belong to same class

Q3-1: Which of the following statements are True?

- In a decision tree, once you split using one feature, you cannot split again using the same feature.
- 2. We should split along all features to create a decision tree.
- 3. We should keep splitting the tree until there is only one data point left at each leaf node.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov