

CS 760: Machine Learning **Decision Trees & Evaluation**

Kirthi Kandasamy

University of Wisconsin-Madison

Feb 8, 2023

Announcements

• Midterm: Thu Mar 9, 7:30 pm, B130 Van Vleck Hall

Outline

Wrapping up decision trees

- Information gain, stopping criteria
- Evaluation in decision trees: overfitting, pruning, variations

Evaluation: Generalization

Train/test split, random sampling, cross validation

Evaluation: Metrics

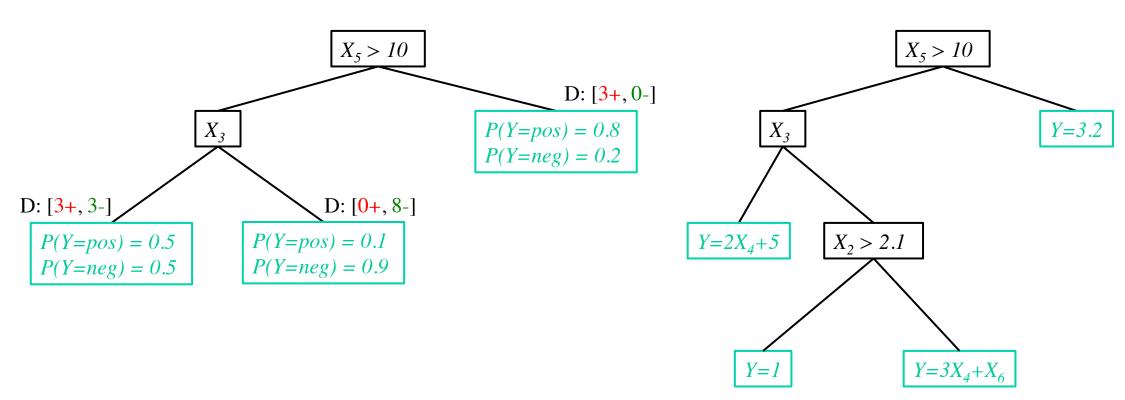
Confusion matrices, ROC curves, precision/recall

Outline

- Wrapping up decision trees
 - Information gain, stopping criteria
 - Evaluation in decision trees: overfitting, pruning, variations
- Evaluation: Generalization
 - Train/test split, random sampling, cross validation
- Evaluation: Metrics
 - Confusion matrices, ROC curves, precision/recall

Variations

- Probability estimation trees
 - Leaves: estimate the probability of each class
- Regression trees
 - Either numeric values (e.g. average label) or functions (e.g., linear functions) at each leaf.



DT Learning: InfoGain Limitations

- InfoGain is biased towards tests with many outcomes
 - Splitting on it results in many branches, each of which is "pure" (has instances of only one class)
 - In the extreme: A feature that uniquely identifies each instance
 - Maximal information gain!
- •Use GainRatio: normalize information gain by entropy

GainRatio
$$(D, S) = \frac{\text{InfoGain}(D, S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

DT Learning: GainRatio

- •Why?
 - Suppose S is a *binary split*. InfoGain limited to 1 bit, no matter what

what. InfoGain
$$(D, S) = H_D(Y) - H_D(Y|S)$$

Intuition: at most, S tells us Y is in one half of its classes or the other

- Now suppose S is different for each instance (i.e., student number).
 - Uniquely determines Y for each point, but useless for generalization.
 - But, then $H_D(Y|S) = 0$, so maximal information gain!
- Control this by normalizing by H_D(S).
 - Above: for n instances, $H_D(S) = \log_2(n)$

GainRatio(D, S) =
$$\frac{\text{InfoGain}(D,S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

DT Learning: GainRatio

- •Why?
 - Suppose S is a *binary split*. InfoGain limited to 1 bit, no matter what

what. InfoGain
$$(D, S) = H_D(Y) - H_D(Y|S)$$

Intuition: at most, S tells us Y is in one half of its classes or the other

- Now suppose S is different for each instance (i.e., student number).
 - Uniquely determines Y for each point, but useless for generalization.
 - But, then $H_D(Y|S) = 0$, so maximal information gain!
- Control this by normalizing by H_D(S).
 - Above: for n instances, $H_D(S) = \log_2(n)$

GainRatio(D, S) =
$$\frac{\text{InfoGain}(D,S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

Candidate splits for regression

Several options:

- Split along every data point.
- Split along a grid
- In either case, may need to filter splits using some heuristic.

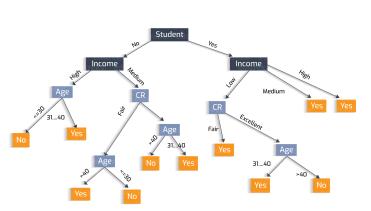
Decision Trees: Comments

- Widely used approach
 - Many variations
- Provides humanly comprehensible models
 - When trees not too big
- Insensitive to monotone transformations of numeric features
- Implementation can (and does) vary, performance may depend on specific choices.

Decision Trees: Learning

• Learning Algorithm: MakeSubtree(set of training instances D)

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$



```
C = DetermineCandidateSplits(D)
if stopping criteria is met
```

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group k of S

 D_k = subset of training data in group k k^{th} child of N = MakeSubtree(D_k)

return subtree rooted at N

Model selection in decision trees

Evaluation: Accuracy

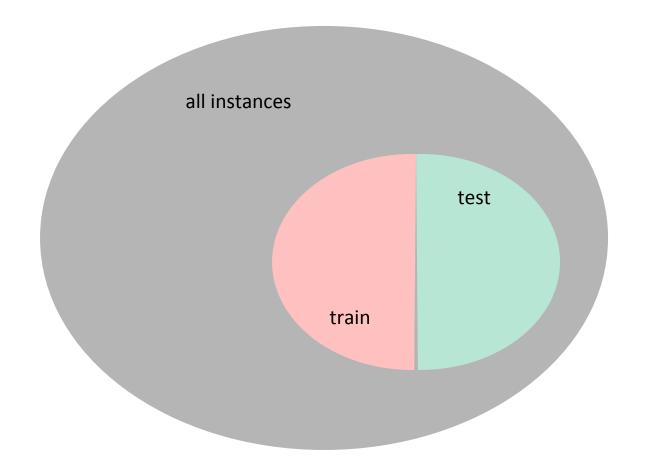
- Can we just calculate the fraction of training instances that are correctly classified?
- Consider a problem domain in which instances are assigned labels at random with P(Y = 1) = 0.5
 - How accurate would it be on its training set, if you stop when all instances are in the same class?
 - How accurate would a learned decision tree be on previously unseen instances?

Recall: our goal is to do well on future data.

Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a set of instances that are **held-aside** during learning

This is called a test set



Overfitting

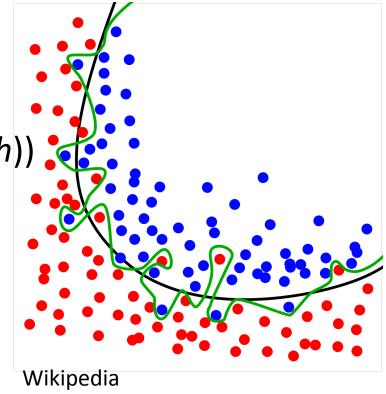
Notation: error of model *h* over

- training data: error_D(h)
- entire distribution of data: error_D(h)

Model *h* overfits training data if it has

• a low error on the training data (low error_D(h))

• high error on the entire distribution (high error_D(h))



Overfitting Example: Noisy Data

Target function is
$$Y=X_1\wedge X_2$$

- There is **noise** in some feature values
- Training set:

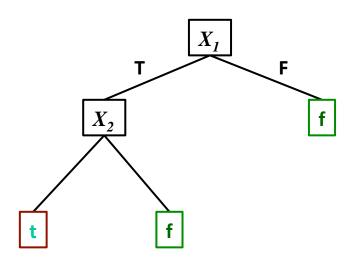
X_{I}	X_2	X_3	X_4	X_5	•••	Y
t	t	t	t	t	•••	t
t	t	f	f	t	•••	t
t	f	t	t	f	•••	t
t	f	f	t	f	•••	f
t	f	t	f	f	•••	f
f	t	t	f	t	•••	f

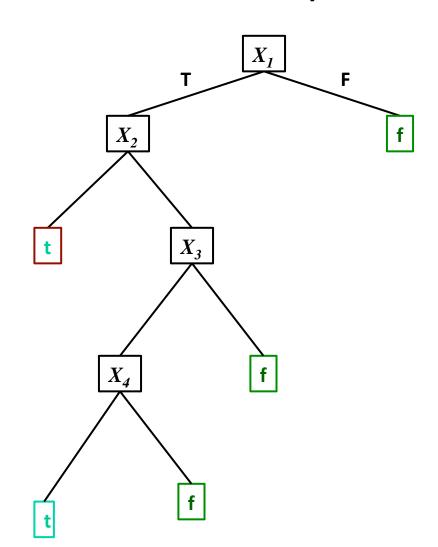
noisy value

Overfitting Example: Noisy Data

Correct tree

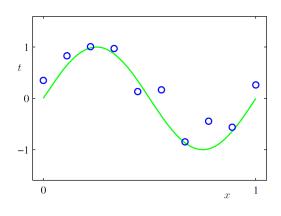
Tree that fits noisy training data

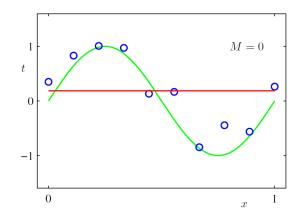


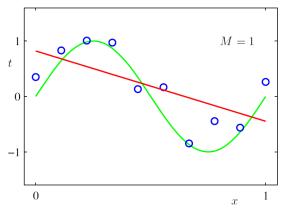


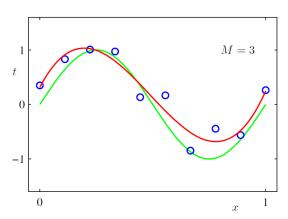
Can you over-fit with noiseless data?

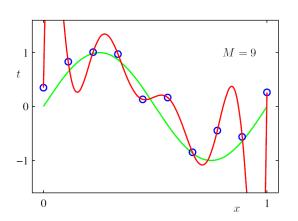
An example with both phenomena





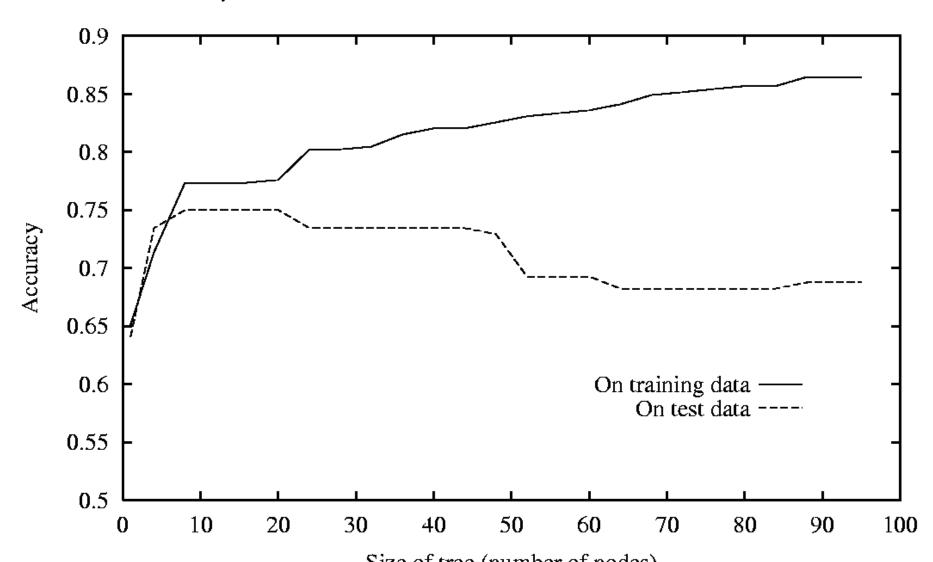






Overfitting: Tree Size vs. Accuracy

Tree size vs accuracy



General Phenomenon

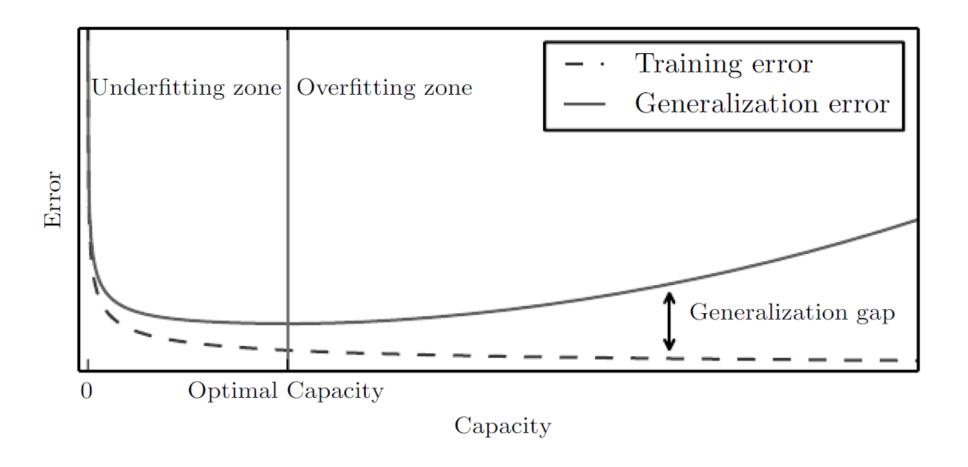


Figure from Deep Learning, Goodfellow, Bengio and Courville

Decision Tree Learning: Avoiding Overfitting

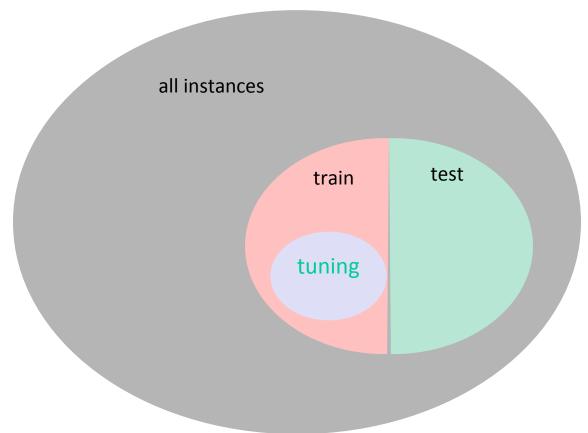
Two general strategies to avoid overfitting

- 1. During training: create two-way instead of multi-way splits, stop if further splitting not justified by a statistical test
- 2. Post-pruning: grow a large tree, then prune back some nodes
 - E.g. evaluate impact on *tuning-set* accuracy of pruning each node
 - Greedily remove the one that most improves *tuning-set* accuracy

Tuning Sets

- A tuning set (a.k.a. validation set) is
 - not used for primary training process (e.g. tree growing)
 - but used to select among models (e.g. trees pruned to varying degrees)

- Why can you not use the training set to prune?
- Why can you not use the test set to prune?



Break & Quiz

Which of the following statements is TRUE?

- 1. If there is no noise, then there is no overfitting.
- 2. Overfitting may improve the generalization ability of a model.
- Generalization error is monotone with respect to the capacity/ complexity of a model.
- 4. More training data may help preventing overfitting.

Which of the following statements is TRUE?

- 1. If there is no noise, then there is no overfitting.
- 2. Overfitting may improve the generalization ability of a model.
- 3. Generalization error is monotone with respect to the capacity/complexity of a model.
- 4. More training data may help preventing overfitting.

- 1. We can still have false correlation that leads to overfitting.
- 2. Overfitting would undermine the generalization ability.
- 3. Generalization error would first decrease and then increase as the model capacity increases.
- 4. Increasing training data size would help better approximate the true distribution.

True or False:

In k-NN, using large k leads to over-fitting.

True or False:

In k-NN, using large k leads to over-fitting.

Ans: False!

Outline

Wrapping up decision trees

- Information gain, stopping criteria
- Model selection in decision trees: overfitting, pruning, variations

Evaluation: Generalization

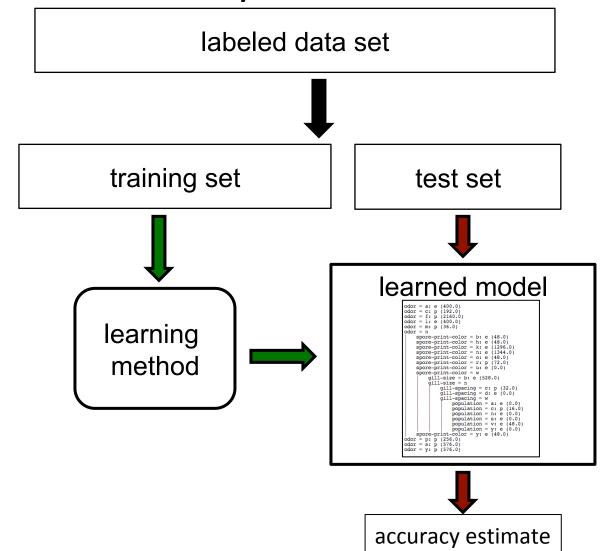
Train/test split, random sampling, cross validation

Evaluation: Metrics

Confusion matrices, ROC curves, precision/recall

Accuracy of a Model

•How can we get estimate the accuracy of a learned model?



Using a Test Set

- •How can we get estimate the accuracy of a learned model?
 - When learning a model, you should pretend that you don't have the test data yet
 - If the test-set labels influence the learned model in any way, accuracy estimates will not be correct, as you may have fitted to your test set.

• Don't train on the test set!

Single Train/Test Split: Limitations

- May not have enough data for sufficiently large training/test sets
 - A larger test set gives us more reliable estimate of accuracy (i.e. a lower variance estimate)

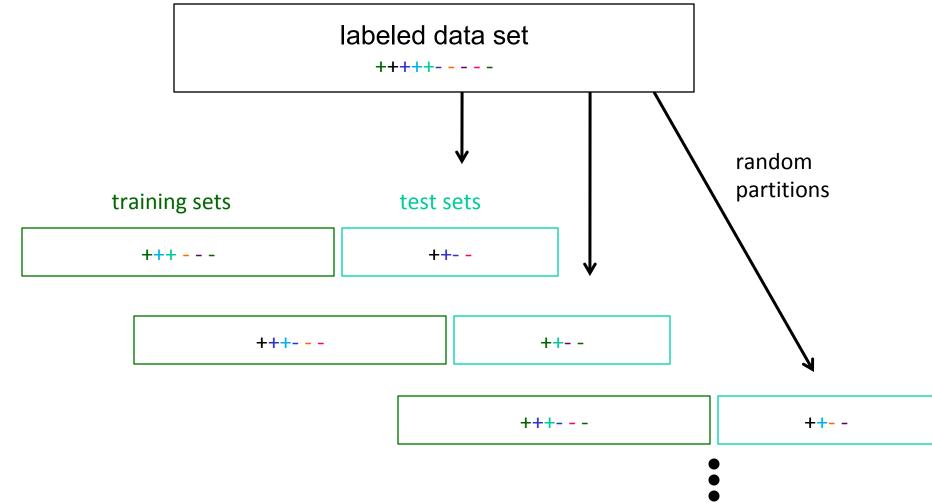
But... a larger training set will be more representative of how much data we

actually have for learning process

 A single training set does not tell us how sensitive accuracy is to a particular training sample

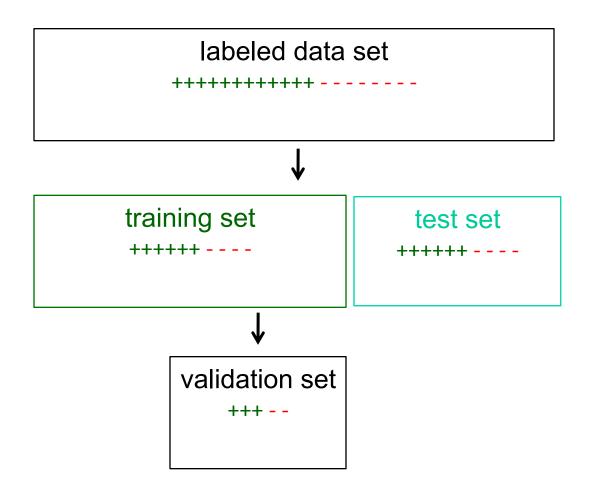
Strategy I: Random Resampling

 Address the second issue by repeatedly randomly partitioning the available data into training and test sets.



Strategy I: Stratified Sampling

 When randomly selecting training or validation sets, we may want to ensure that class proportions are maintained in each selected set



This can be done via stratified sampling: first stratify instances by class, then randomly select instances from each class proportionally.

Strategy II: Cross Validation

Partition data into *n* subsamples

labeled data set

S₁ S₂ S₃ S₄ S₅

Iteratively leave one subsample out for the test set, train on the rest

iteration	train on	test on
1	S ₂ S ₃ S ₄ S ₅	S ₁
2	S ₁ S ₃ S ₄ S ₅	S ₂
3	S ₁ S ₂ S ₄ S ₅	S ₃
4	s ₁ s ₂ s ₃ s ₅	S ₄
5	S ₁ S ₂ S ₃ S ₄	S ₅

Strategy II: Cross Validation Example

•Suppose we have 100 instances, and we want to estimate accuracy with cross validation

iteration	train on	test on	correct
1	$S_2 S_3 S_4 S_5$	S_1	11 / 20
2	$S_1 S_3 S_4 S_5$	S ₂	17 / 20
3	S ₁ S ₂ S ₄ S ₅	s ₃	16 / 20
4	S ₁ S ₂ S ₃ S ₅	S ₄	13 / 20
5	$S_1 S_2 S_3 S_4$	S ₅	16 / 20

accuracy =
$$73/100 = 73\%$$

Strategy II: Cross Validation Tips

- 10-fold cross validation is common, but smaller values folds are often used when learning takes a lot of time
- in *leave-one-out* cross validation, *n* = # instances
- in stratified cross validation, stratified sampling is used when partitioning the data
- CV makes efficient use of the available data for testing
- note that whenever we use multiple training sets, as in CV and random resampling, we are evaluating a <u>learning model (with specific choices)</u> as opposed to an <u>individual learned hypothesis</u>
- You can use CV for tuning as well!

Learning Curves

- Accuracy of a method as a function of the train set size?
 - Plot learning curves

Training/test set partition

- for each sample size s on learning curve
 - (optionally) repeat *n* times
 - randomly select s instances from training set
 - learn model
 - evaluate model on test set to determine accuracy a
 - plot (s, a) or (s, avg. accuracy and error bars)

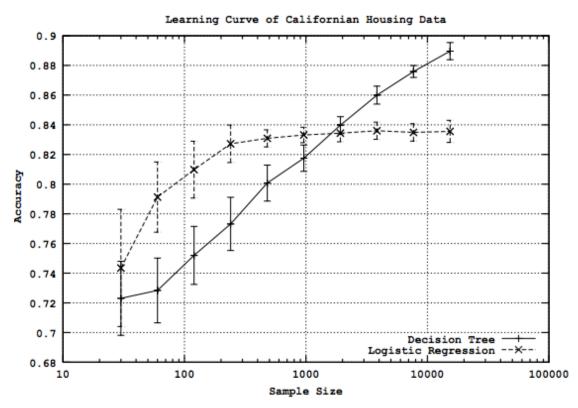


Figure from Perlich et al. Journal of Machine Learning Research, 2003

Break & Quiz

- Q: Are these statements true or not?
- (A) The sample size on the learning curve is the size of test set.
- (B) A larger training set would provide a lower variance estimate of the accuracy of a learned model.
- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

- Q: Are these statements true or not?
- (A) The sample size on the learning curve is the size of test set.
- (B) A larger training set would provide a lower variance estimate of the accuracy of a learned model.
- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

- (A) The sample size on the learning curve is for training set.
- (B) A larger test set rather than a larger training set does so.

Q: Which of the following is NOT true?

- Class proportions are maintained same in the stratified sampling.
- 2. In leave-one-out cross validation, the number of partition equals to the number of instances.
- In cross validation, we are evaluating the performance of an individual learned hypothesis.

Q: Which of the following is NOT true?

- 1. Class proportions are maintained same in the stratified sampling.
- 2. In leave-one-out cross validation, the number of partition equals to the number of instances.
- In cross validation, we are evaluating the performance of an individual learned hypothesis.

In cross validation, we are evaluating a learning method as opposed to a specific individual learned hypothesis.

Outline

- Wrapping up decision trees
 - Information gain, stopping criteria
 - Evaluation in decision trees: overfitting, pruning, variations

Evaluation: Generalization

- Train/test split, random sampling, cross validation
- Evaluation: Metrics
 - Confusion matrices, ROC curves, precision/recall

Beyond Accuracy: Confusion Matrices

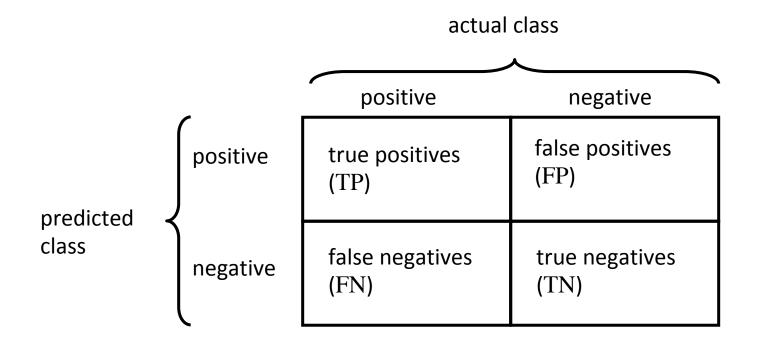
• How can we understand what types of mistakes a learned model makes?

task: activity recognition from video

100 bend jack 0 jump -0 100 pjump -89 11 0 0 0 0 run -100 0 side 0 skip -100 0 0 0 100 0 0 walk 0 33 67 wave' wave2 jack pjump side

actual class

Confusion Matrices: 2-Class Version



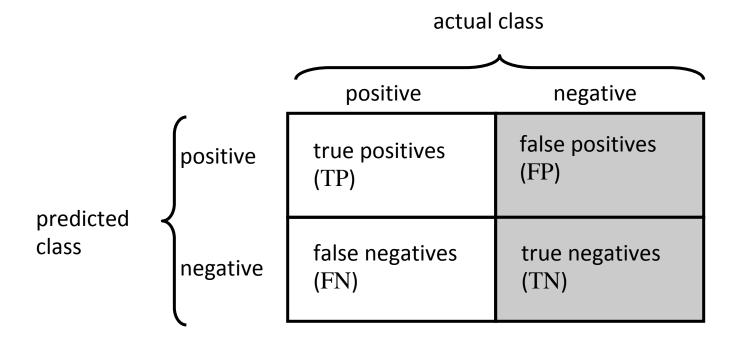
accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$
error = 1 - accuracy =
$$\frac{FP + FN}{TP + FP + FN + TN}$$

Accuracy: Sufficient?

Accuracy may not be useful measure in cases where

- There is a large class skew
 - Is 98% accuracy good when 97% of the instances are negative?
- There are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease

Other Metrics



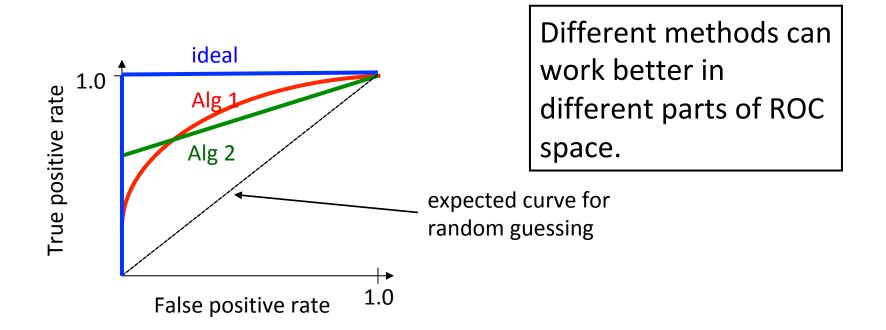
true positive rate (recall) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

false positive rate =
$$\frac{FP}{\text{actual neg}}$$
 = $\frac{FP}{TN + FP}$

If you have probabilities for binary classification, how do you decide on class?

Other Metrics: ROC Curves

• A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied



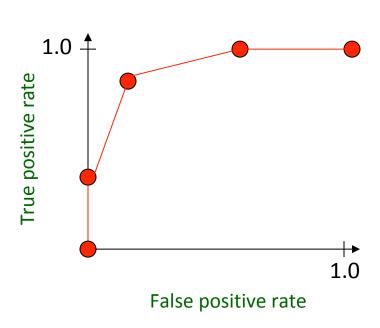
Sometimes, area under the ROC curve is used to evaluate a model

ROC Curves: Algorithm

```
let ((y^{(1)}, c^{(1)})...(y^{(m)}, c^{(m)})) be the test-set instances sorted according to predicted confidence c^{(i)} that each instance is positive
let num_neg, num_pos be the number of negative/positive instances in the test set
TP = 0, FP = 0
last TP = 0
for i = 1 to m
    // find thresholds where there is a pos instance on high side, neg instance on low side
    if (i > 1) and (c^{(i)} \neq c^{(i-1)}) and (y^{(i)} == \text{neg}) and (TP > last TP)
            FPR = FP / num_neg, TPR = TP / num_pos
            output (FPR, TPR) coordinate
            last TP = TP
    if y^{(i)} == pos
    ++TP
    else
            ++FP
FPR = FP / num neq, TPR = TP / num pos
output (FPR, TPR) coordinate
```

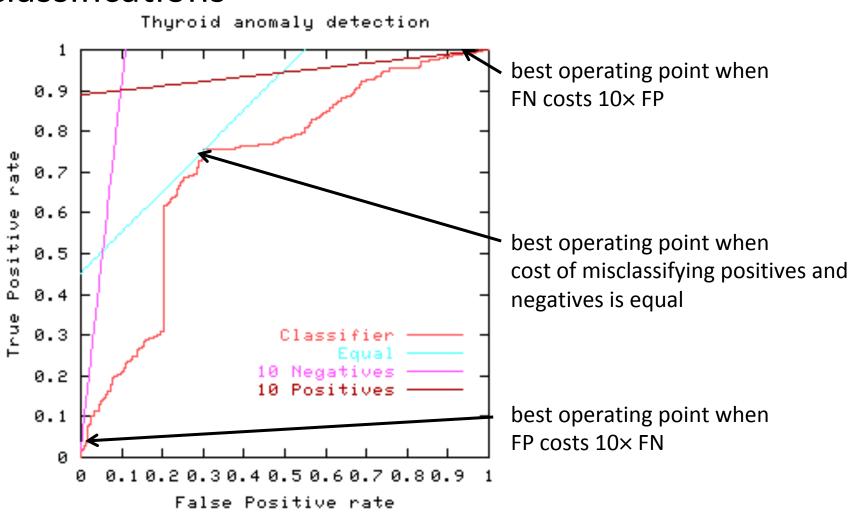
ROC Curves: Plotting

confidence			correct
instance	positive		class
Ex 9	.99		+
Ex 7	.98	TPR= 2/5, FPR= 0/5	+
Ex 1	.72		-
Ex 2	.70		+
Ex 6	.65	TPR= 4/5, FPR= 1/5	+
Ex 10	.51		-
Ex 3	.39		-
Ex 5	.24	TPR= 5/5, FPR= 3/5	+
Ex 4	.11		-
Ex 8	.01	TPR= 5/5, FPR= 5/5	_

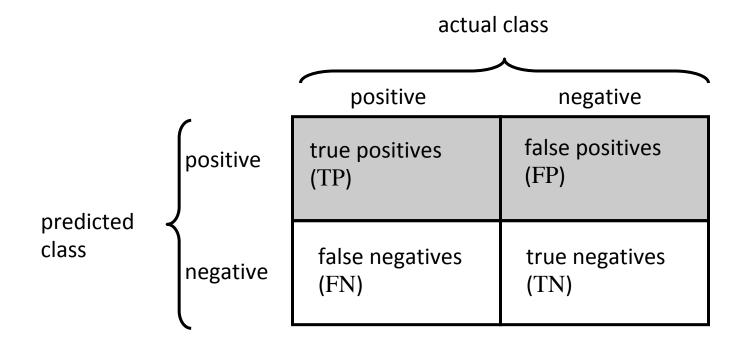


ROC Curves: Misclassification Cost

 The best operating point depends on relative cost of FN and FP misclassifications



Other Metrics: Precision

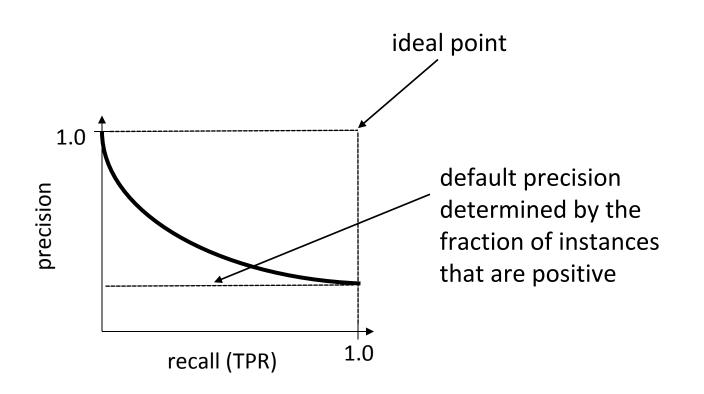


recall (TP rate) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

precision (positive predictive value) =
$$\frac{TP}{predicted pos}$$
 = $\frac{TP}{TP + FP}$

Other Metrics: Precision/Recall Curve

• A *precision/recall curve* (TP-rate): threshold on the confidence of an instance being positive is varied



predicting patient risk for VTE

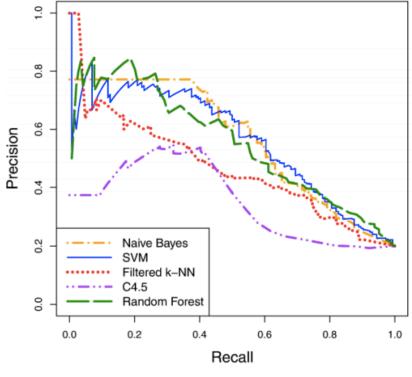


figure from Kawaler et al., Proc. of AMIA Annual Symposium, 2012

ROC vs. PR curves

Both

- Allow predictive performance to be assessed at various levels of confidence
- Assume binary classification tasks
- Sometimes summarized by calculating area under the curve

ROC curves

- Insensitive to changes in class distribution (ROC curve does not change if the proportion of positive and negative instances in the test set are varied)
- Can identify optimal classification thresholds for tasks with differential misclassification costs

Precision/recall curves

- Show the fraction of predictions that are false positives
- Well suited for tasks with lots of negative instances

Confidence Intervals

- Back to looking at accuracy on new data.
- •Scenario:
 - For some model h, a test set S with n samples
 - We have *h* producing *r* errors out of *n*.
 - Our estimate of the error rate: $error_s(h) = r/n$



With C% probability, true error is in interval

$$error_{S}(h) \pm z_{C} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

• $z_{\rm C}$ depends on C.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov