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Announcements	
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Outline	

• 	Wrapping	up	decision	trees	
• Information	gain,	stopping	criteria	
• Evaluation	in	decision	trees:	overfitting,	pruning,	variations	

• Evaluation:	Generalization	
• 	Train/test	split,	random	sampling,	cross	validation	

• Evaluation:	Metrics	
• 	Confusion	matrices,	ROC	curves,	precision/recall	
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Variations	

•  Probability	estimation	trees	
•  Leaves:	estimate	the	probability	of	each	class	

•  Regression	trees	
•  Either	numeric	values	(e.g.	average	label)	or	functions	(e.g.,	linear	functions)	at	each	leaf.	
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DT	Learning:	InfoGain	Limitations	

• InfoGain	is	biased	towards	tests	with	many	outcomes	
• Splitting on it results in many branches, each of which is 
“pure” (has instances of only one class) 

• In the extreme: A feature that uniquely identifies each instance 
• Maximal information gain! 
	

• Use	GainRatio:	normalize	information	gain	by	entropy	

GainRatio(D,S) = InfoGain(D,S)
HD(S) = HD(Y )�HD(Y |S)

HD(S)

<latexit sha1_base64="KlzAuK3QHhk510rVgvzq8oRqYh0="></latexit>



DT	Learning:	GainRatio	

• Why?	
• Suppose	S	is	a	binary	split.	InfoGain	limited	to	1	bit,	no	matter	
what.	

	
• Now	suppose	S	is	different	for	each	instance	(i.e.,	student	number).	

• Uniquely	determines	Y	for	each	point,	but	useless	for	generalization.		
• But,	then	HD(Y|S)	=	0,	so	maximal	information	gain!	

• Control	this	by	normalizing	by	HD(S).	
• Above:	for	n	instances,	HD(S)	=	log2(n)	

InfoGain(D,S) = HD(Y )�HD(Y |S)

<latexit sha1_base64="iRyy2a8CgNJB2k9cGnjeV9FYQRw=">AAACE3icbZDLSgMxFIYz9V5vVZdugq3QipYZUXQjiArWXUWrlbaUTJppQzOZITkjlrHv4MZXceNCEbdu3Pk2ppeFWn8IfPznHE7O74aCa7DtLysxNj4xOTU9k5ydm19YTC0tX+kgUpSVaCACVXaJZoJLVgIOgpVDxYjvCnbtto979etbpjQP5CV0QlbzSVNyj1MCxqqnNjJVYHcQn0kvOCVcdrMnmxc5fIAL9ZPsTQ5vDeD+Ipepp9J23u4Lj4IzhDQaqlhPfVYbAY18JoEKonXFsUOoxUQBp4J1k9VIs5DQNmmyikFJfKZrcf+mLl43TgN7gTJPAu67Pydi4mvd8V3T6RNo6b+1nvlfrRKBt1+LuQwjYJIOFnmRwBDgXkC4wRWjIDoGCFXc/BXTFlGEgokxaUJw/p48ClfbeWcnv3u+nT48GsYxjVbRGsoiB+2hQ1RARVRCFD2gJ/SCXq1H69l6s94HrQlrOLOCfsn6+AZ8sZq4</latexit>

Intuition:	at	most,	S	tells	us	Y	is	in	one	half	of	its	
classes	or	the	other	

GainRatio(D,S) = InfoGain(D,S)
HD(S) = HD(Y )�HD(Y |S)

HD(S)

<latexit sha1_base64="KlzAuK3QHhk510rVgvzq8oRqYh0="></latexit>



DT	Learning:	GainRatio	

• Why?	
• Suppose	S	is	a	binary	split.	InfoGain	limited	to	1	bit,	no	matter	
what.	

	
• Now	suppose	S	is	different	for	each	instance	(i.e.,	student	number).	

• Uniquely	determines	Y	for	each	point,	but	useless	for	generalization.		
• But,	then	HD(Y|S)	=	0,	so	maximal	information	gain!	

• Control	this	by	normalizing	by	HD(S).	
• Above:	for	n	instances,	HD(S)	=	log2(n)	

InfoGain(D,S) = HD(Y )�HD(Y |S)
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Intuition:	at	most,	S	tells	us	Y	is	in	one	half	of	its	
classes	or	the	other	

GainRatio(D,S) = InfoGain(D,S)
HD(S) = HD(Y )�HD(Y |S)

HD(S)
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Candidate	splits	for	regression	

Several	options:	
• Split	along	every	data	point.	
• Split	along	a	grid	
• In	either	case,	may	need	to	filter	splits	using	some	heuristic.	

	
	



Decision	Trees:	Comments	

• Widely	used	approach	
• Many	variations	

• Provides	humanly	comprehensible	models		
• When	trees	not	too	big	

• Insensitive	to	monotone	transformations	of	numeric	features	
• Implementation	can	(and	does)	vary,	performance	may	
depend	on	specific	choices.	
	



Decision	Trees:	Learning		
MakeSubtree(set	of	training	instances	D)	

	C	=	DetermineCandidateSplits(D)	
	if	stopping	criteria	is	met	
	 	make	a	leaf	node	N
	 	determine	class	label	for	N	
	else	
	 	make	an	internal	node	N	
	 	S	=	FindBestSplit(D, C)	
	 	for	each	group	k	of	S	
	 	 	Dk	=	subset	of	training	data	in	group	k
	 	 	kth	child	of	N	=	MakeSubtree(Dk)	
	return	subtree	rooted	at	N	

• Learning	Algorithm:	

{(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))}

<latexit sha1_base64="x8feO+qWXWmBKBJflFiHP+cZRb8=">AAACMXicbZDLSsNAFIYnXmu9VV26GWyFFkpJiqLLopsuK9gLNLFMJtN26OTCzEQMIa/kxjcRN10o4taXcJqmoK0HBj7+/xzOnN8OGBVS16fa2vrG5tZ2bie/u7d/cFg4Ou4IP+SYtLHPfN6zkSCMeqQtqWSkF3CCXJuRrj25nfndR8IF9b17GQXEctHIo0OKkVTSoNAsmXH56SEuG5WkCqM5VKow1eoLrZ5qJnN8KTLPXXgKKmZSGhSKek1PC66CkUERZNUaFF5Nx8ehSzyJGRKib+iBtGLEJcWMJHkzFCRAeIJGpK/QQy4RVpxenMBzpThw6HP1PAlT9fdEjFwhItdWnS6SY7HszcT/vH4oh9dWTL0glMTD80XDkEHpw1l80KGcYMkiBQhzqv4K8RhxhKUKOa9CMJZPXoVOvWZc1C7v6sXGTRZHDpyCM1AGBrgCDdAELdAGGDyDN/AOPrQXbap9al/z1jUtmzkBf0r7/gGi66UT</latexit>



Model selection in decision trees



Evaluation:	Accuracy	

• Can	we	just	calculate	the	fraction	of	training	instances	that	
are	correctly	classified?	

•  Consider	a	problem	domain	in	which	instances	are	assigned	labels	at	random	
with	P(Y	=	1)	=	0.5 		
•  How	accurate	would	it	be	on	its	training	set,	if	you	stop	when	all	instances	

are	in	the	same	class?		
•  How	accurate	would	a	learned	decision	tree	be	on	previously	unseen	

instances?	

•  Recall:	our	goal	is	to	do	well	on	future	data.	



Evaluation:	Accuracy	

To	get	unbiased	estimate	of	model	accuracy,	we	must	use	a	
set	of	instances	that	are	held-aside	during	learning	
•  This	is	called	a	test	set	

all	instances	

test	

train	



Wikipedia	

Overfitting	

Notation:	error	of	model	h	over	
•  training	data:	errorD(h)	
•  entire	distribution	of	data:	errorD(h)	

Model	h	overfits	training	data	if	it	has		
• a	low	error	on	the	training	data	(low	errorD(h))	
• high	error	on	the	entire	distribution	(high	errorD(h))	

	

	
	



Overfitting	Example:	Noisy	Data	

Target	function	is		
•  There	is	noise	in	some	feature	values	
•  Training	set:	

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

noisy	value	

Y = X1 ^X2

<latexit sha1_base64="l3BoH4hSaEJa+EFCp1pSbIJtm2A=">AAAB/XicbZDLSsNAFIYn9VbrLV52bgZbwVVJiqIboejGZQV7kTaEyeSkHTq5MDNRaii+ihsXirj1Pdz5Nk7bLLT6w8DHf87hnPm9hDOpLOvLKCwsLi2vFFdLa+sbm1vm9k5Lxqmg0KQxj0XHIxI4i6CpmOLQSQSQ0OPQ9oaXk3r7DoRkcXSjRgk4IelHLGCUKG255l7lFp/jjmvj3j34fdBYq7hm2apaU+G/YOdQRrkarvnZ82OahhApyomUXdtKlJMRoRjlMC71UgkJoUPSh67GiIQgnWx6/RgfasfHQSz0ixSeuj8nMhJKOQo93RkSNZDztYn5X62bquDMyViUpAoiOlsUpByrGE+iwD4TQBUfaSBUMH0rpgMiCFU6sJIOwZ7/8l9o1ar2cfXkulauX+RxFNE+OkBHyEanqI6uUAM1EUUP6Am9oFfj0Xg23oz3WWvByGd20S8ZH98VBpMQ</latexit>



Overfitting	Example:	Noisy	Data	

X1

X2

T	 F	

X3t	

f	

f	

f	

X4

t

X1

X2

T	 F	

t	 f	

f	

Correct	tree	 Tree	that	fits	noisy	training	data	



Can	you	over-fit	with	noiseless	data?	



An	example	with	both	phenomena	



Overfitting:	Tree	Size	vs.	Accuracy		
•  Tree	size	vs	accuracy	



General	Phenomenon 

Figure	from	Deep	Learning,	Goodfellow,	Bengio	and	Courville 



Decision	Tree	Learning:	Avoiding	Overfitting	

Two	general	strategies	to	avoid	overfitting	
1.   During	training:	create	two-way	instead	of	multi-way	splits,	stop	if	further	

splitting	not	justified	by	a	statistical	test	

2.   Post-pruning:	grow	a	large	tree,	then	prune	back	some	nodes	
•  E.g:	evaluate	impact	on	tuning-set	accuracy	of	pruning	each	node	
•  Greedily	remove	the	one	that	most	improves	tuning-set	accuracy	

	



all	instances	

test	train	

tuning 

Tuning	Sets	
•  A	tuning	set	(a.k.a.	validation	set)	is	

•  not	used	for	primary	training	process	(e.g.	tree	growing)	
•  but	used	to	select	among	models	(e.g.	trees	pruned	to	varying	
degrees)	

• Why	can	you	not	use	the	
	training	set	to	prune?	

• Why	can	you	not	use	the	
	test	set	to	prune?	

	
	



Break & Quiz



Which	of	the	following	statements	is	TRUE?	

1.  If	there	is	no	noise,	then	there	is	no	overfitting.		
2.  Overfitting	may	improve	the	generalization	ability	of	a	model.	
3.  Generalization	error	is	monotone	with	respect	to	the	capacity/

complexity	of	a	model.	
4.  More	training	data	may	help	preventing	overfitting.	



Which	of	the	following	statements	is	TRUE?	

1.  If	there	is	no	noise,	then	there	is	no	overfitting.		
2.  Overfitting	may	improve	the	generalization	ability	of	a	model.	
3.  Generalization	error	is	monotone	with	respect	to	the	capacity/

complexity	of	a	model.	
4.  More	training	data	may	help	preventing	overfitting.	

1.  We	can	still	have	false	correlation	that	leads	to	overfitting.	
2.  Overfitting	would	undermine	the	generalization	ability.	
3.  Generalization	error	would	first	decrease	and	then	increase	as	the	model	capacity	

increases.	
4.  Increasing	training	data	size	would	help	better	approximate	the	true	distribution.	



True	or	False:	
In	k-NN,	using	large	k	leads	to	over-fitting.		
	



True	or	False:	
In	k-NN,	using	large	k	leads	to	over-fitting.		
	
	
Ans:	False!	



Outline	

• 	Wrapping	up	decision	trees	
• Information	gain,	stopping	criteria	
• Model	selection	in	decision	trees:	overfitting,	pruning,	
variations	

• Evaluation:	Generalization	
• 	Train/test	split,	random	sampling,	cross	validation	

• Evaluation:	Metrics	
• 	Confusion	matrices,	ROC	curves,	precision/recall	



Accuracy	of	a	Model	

• How	can	we	get	estimate	the	accuracy	of	a	learned	model?	

	
	

labeled data set 

training set test set 

accuracy	estimate	

learned model 
 learning 

method 



Using	a	Test	Set	

• How	can	we	get	estimate	the	accuracy	of	a	learned	model?	
• When	learning	a	model,	you	should	pretend	that	you	don’t	have	
the	test	data	yet	

• If	the	test-set	labels	influence	the	learned	model	in	any	way,	
accuracy	estimates	will	not	be	correct,	as	you	may	have	fitted	to	
your	test	set.	
	
	
	

• Don’t	train	on	the	test	set!	



Single	Train/Test	Split:	Limitations		

•  May	not	have	enough	data	for	sufficiently	large	training/test	sets	
•  A	larger	test	set	gives	us	more	reliable	estimate	of	accuracy	(i.e.	a	lower	

variance	estimate)	
•  But…	a	larger	training	set	will	be	more	representative	of	how	much	data	we	

actually	have	for	learning	process	

•  A	single	training	set	does	not	tell	us	how	sensitive		
accuracy	is	to	a	particular	training	sample	



Strategy	I:	Random	Resampling	

• Address	the	second	issue	by	repeatedly	randomly	
partitioning	the	available	data	into	training	and	test	sets.		

labeled data set 
+++++-	-	-	-	-	

+++-	-	-		 ++-	-	

random	
partitions	

+++-	-	-	 ++-	-	

+++	-	-	-	 ++-	-	

training	sets	 test	sets	



Strategy	I:	Stratified	Sampling	

• When	randomly	selecting	training	or	validation	sets,	we	may	want	to	
ensure	that	class	proportions	are	maintained	in	each	selected	set	

labeled data set 
++++++++++++	-	-	-	-	-	-	-	-	

 

training set 
++++++	-	-	-	-	

 

test set 
++++++	-	-	-	-	

 

validation set 
+++	-	- 

This	can	be	done	via	stratified	sampling:	first	
stratify	instances	by	class,	then	randomly	
select	instances	from	each	class	proportionally.	
	
	



Strategy	II:	Cross	Validation	

labeled data set 

s1 s2	 s3	 s4	 s5	

iteration	 train	on	 test	on	

1	 s2			s3			s4					s5		 s1	

2	 s1			s3			s4				s5		 s2	

3	 s1			s2				s4					s5		 s3	

4	 s1			s2				s3				s5		 s4	

5	 s1			s2				s3				s4		 s5		

Partition	data	
into	n	subsamples	

Iteratively	leave	one	
subsample	out	for	the	
test	set,	train	on	the	
rest	



Strategy	II:	Cross	Validation	Example	

• Suppose	we	have	100	instances,	and	we	want	to	estimate	
accuracy	with	cross	validation	

iteration	 train	on	 test	on	 correct	
1	 s2			s3			s4					s5		 s1	 11	/	20	
2	 s1			s3			s4				s5		 s2	 17	/	20	
3	 s1			s2				s4					s5		 s3	 16	/	20	
4	 s1			s2				s3				s5		 s4	 13	/	20	
5	 s1			s2				s3				s4		 s5		 16	/	20	

accuracy	=	73/100	=	73%	



Strategy	II:	Cross	Validation	Tips	
•  10-fold	cross	validation	is	common,	but	smaller	values	folds	are	often	used	

when	learning	takes	a	lot	of	time	
	

•  in	leave-one-out	cross	validation,	n	=	#	instances	
	

•  in	stratified	cross	validation,	stratified	sampling	is	used	when	partitioning	the	
data	

	

•  CV	makes	efficient	use	of	the	available	data	for	testing	
	

•  note	that	whenever	we	use	multiple	training	sets,	as	in	CV	and	random	
resampling,	we	are	evaluating	a	learning	model	(with	specific	choices)	as	
opposed	to	an	individual	learned	hypothesis	

	

•  You	can	use	CV	for	tuning	as	well!	



Figure	from	Perlich	et	al.	Journal	of	Machine	Learning	Research,	2003	

Learning	Curves	

• Accuracy	of	a	method	as	a	function	of	the	train	set	size?	
• Plot	learning	curves	

• Why	are	learning	curves	useful?	

Training/test	set	partition	
•  for	each	sample	size	s	on	learning	curve	

•  (optionally)	repeat	n	times	
•  randomly	select	s	instances	from	training	set	
•  learn	model	
•  evaluate	model	on	test	set	to	determine	

accuracy	a
•  plot	(s, a) 				or	(s,	avg.	accuracy	and	error	

bars)	
	



Break & Quiz



Q:	Are	these	statements	true	or	not?	
(A)	The	sample	size	on	the	learning	curve	is	the	size	of	test	set.	
(B)	A	larger	training	set	would	provide	a	lower	variance	estimate	of	the	
accuracy	of	a	learned	model.	
	
1.  True,	True	
2.  True,	False	
3.  False,	True	
4.  False,	False	



Q:	Are	these	statements	true	or	not?	
(A)	The	sample	size	on	the	learning	curve	is	the	size	of	test	set.	
(B)	A	larger	training	set	would	provide	a	lower	variance	estimate	of	the	
accuracy	of	a	learned	model.	
	
1.  True,	True	
2.  True,	False	
3.  False,	True	
4.  False,	False	 (A)  The	sample	size	on	the	learning	curve	is	for	training	set.	

(B)  A	larger	test	set	rather	than	a	larger	training	set	does	so.	



Q:	Which	of	the	following	is	NOT	true?	

1.  Class	proportions	are	maintained	same	in	the	
stratified	sampling.		

2.  In	leave-one-out	cross	validation,	the	number	of	
partition	equals	to	the	number	of	instances.	

3.  In	cross	validation,	we	are	evaluating	the	
performance	of	an	individual	learned	hypothesis.	



Q:	Which	of	the	following	is	NOT	true?	

1.  Class	proportions	are	maintained	same	in	the	
stratified	sampling.		

2.  In	leave-one-out	cross	validation,	the	number	of	
partition	equals	to	the	number	of	instances.	

3.  In	cross	validation,	we	are	evaluating	the	
performance	of	an	individual	learned	hypothesis.	 In	cross	validation,	we	are	

evaluating	a	learning	method	
as	opposed	to	a	specific	
individual	learned	hypothesis.	



Outline	

• 	Wrapping	up	decision	trees	
• Information	gain,	stopping	criteria	
• Evaluation	in	decision	trees:	overfitting,	pruning,	variations	

• Evaluation:	Generalization	
• 	Train/test	split,	random	sampling,	cross	validation	

• Evaluation:	Metrics	
• 	Confusion	matrices,	ROC	curves,	precision/recall	



Beyond	Accuracy:	Confusion	Matrices	

• How	can	we	understand	what	types	of	mistakes	a	learned	
model	makes?	

predicted	class	

actual	class	

task:	activity	recognition	from	video	



Confusion	Matrices:	2-Class	Version	

accuracy =     TP + TN
TP+FP+FN+TN

true	positives	
(TP)	

true	negatives	
(TN)	

false	positives	
(FP)	

false	negatives	
(FN)	

positive	

negative	

positive	 negative	

predicted	
class	

actual	class	

error =1− accuracy =     FP + FN
TP+FP+FN+TN



Accuracy:	Sufficient?	

Accuracy	may	not	be	useful	measure	in	cases	where	
• There	is	a	large	class	skew	

•  Is	98%	accuracy	good	when	97%	of	the	instances	are	negative?	

• There	are	differential	misclassification	costs	–	say,	getting	a	positive	wrong	
costs	more	than	getting	a	negative	wrong	

•  Consider	a	medical	domain	in	which	a	false	positive	results	in	an	extraneous	test	but	a	false	
negative	results	in	a	failure	to	treat	a	disease	



Other	Metrics	

true positive rate (recall)  =   TP
actual  pos

  =   TP
TP + FN

true	positives	
(TP)	

true	negatives	
(TN)	

false	positives	
(FP)	

false	negatives	
(FN)	

positive	

negative	

positive	 negative	

predicted	
class	

actual	class	

false positive rate  =   FP
actual  neg

  =   FP
TN + FP



If	you	have	probabilities	for	binary	
classification,	how	do	you	decide	on	class?	



Other	Metrics:	ROC	Curves	

• A	Receiver	Operating	Characteristic	(ROC)	curve	plots	the	TP-rate	
vs.	the	FP-rate	as	a	threshold	on	the	confidence	of	an	instance	
being	positive	is	varied	

	
	
Sometimes,	area	under	the	ROC	curve	is	used	to	evaluate	a	model	
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ROC	Curves:	Algorithm	
let																																											be	the	test-set	instances	sorted	according	to	predicted	confidence	c(i)	that	

each	instance	is	positive	
let	num_neg,	num_pos	be	the	number	of	negative/positive	instances	in	the	test	set	
TP	=	0,		FP	=	0	

last_TP	=	0	
for	i	=	1	to	m	

	//	find	thresholds	where	there	is	a	pos	instance	on	high	side,	neg	instance	on	low	side	
	if		(i	>	1)	and	(	c(i)	≠	c(i-1)	)	and	(	y(i)	==	neg	)	and	(	TP	>	last_TP	)	
		 	FPR	=	FP	/	num_neg,			TPR	=	TP	/	num_pos	

	 	output	(FPR,	TPR)	coordinate	
	 	last_TP	=	TP	
	if	y(i)	==	pos	
		++TP	
	else	

	 	++FP	
FPR	=	FP	/	num_neg,		TPR	=	TP	/	num_pos	
output	(FPR,	TPR)	coordinate	
	

		

y(1),  c(1)( )... y(m),  c(m)( )( )



ROC	Curves:	Plotting	
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Ex	9 	.99 	 	 	+	
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Ex	6 	.65 	 	 	+	
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ROC	Curves:	Misclassification	Cost	

• The	best	operating	point	depends	on	relative	cost	of	FN	and	
FP	misclassifications	

best	operating	point	when	
FN	costs	10×	FP	

best	operating	point	when	
cost	of	misclassifying	positives	and	
negatives	is	equal	

best	operating	point	when	
FP	costs	10×	FN	



Other	Metrics:	Precision	
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Other	Metrics:	Precision/Recall	Curve	

• A	precision/recall	curve	(TP-rate):	threshold	on	the	
confidence	of	an	instance	being	positive	is	varied	

default	precision	
determined	by	the	
fraction	of	instances	
that	are	positive	
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figure	from	Kawaler	et	al.,	Proc.	of	AMIA	Annual	Symposium,	2012		

predicting	patient	risk	for	VTE	



Both	
•  Allow	predictive	performance	to	be	assessed	at	various	levels	of	confidence	
•  Assume	binary	classification	tasks	
•  Sometimes	summarized	by	calculating	area	under	the	curve	

ROC	curves	
•  Insensitive	to	changes	in	class	distribution	(ROC	curve	does	not	change	if	the	
proportion	of	positive	and	negative	instances	in	the	test	set	are	varied)	

•  Can	identify	optimal	classification	thresholds	for	tasks	with	differential	
misclassification	costs	

Precision/recall	curves	
•  Show	the	fraction	of	predictions	that	are	false	positives	
• Well	suited	for	tasks	with	lots	of	negative	instances	

ROC	vs.	PR	curves	



Confidence	Intervals		

• Back	to	looking	at	accuracy	on	new	data.	
• Scenario:	

• For	some	model	h,	a	test	set	S	with	n	samples		
• We	have	h	producing	r	errors	out	of	n.	
• Our	estimate	of	the	error	rate:	errorS(h)	=	r/n	

• With	C%	probability,	true	error	is	in	interval		

• zC	depends	on	C.		

errorS (h)± zC
errorS (h)(1− errorS (h))

n



Thanks Everyone!

Some	of	the	slides	in	these	lectures	have	been	adapted/borrowed	from	materials	developed	by	Mark	Craven,	
David	Page,	Jude	Shavlik,	Tom	Mitchell,	Nina	Balcan,	Elad	Hazan,	Tom	Dietterich,	Pedro	Domingos,	Jerry	Zhu,	
Yingyu	Liang,	Volodymyr	Kuleshov		


