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Neural networks: Origins

* Artificial neural networks, connectionist models

* |nspired by interconnected neurons in biological systems
* Simple, homogenous processing units
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Perceptron: Simple Network

Input
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[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]



Perceptron: Components

Input
X1
W1
454 xzk
% ’é \AA Output
Iy 7 () 1 wlz >0
:L‘ _
g wy Y 0 otherwise
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> A
f = wlr U(Cl) — 1 a=20 y(:z:) — O-(wa)

0 otherwise

Activation Function

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960] 6



Perceptron: Representational Power

*Perceptrons can represent only linearly separable concepts

(@) 1 wlz >0

:L‘ _

q 0 otherwise
*Decision boundary given by: / P




Which Functions are Linearly Separable?
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Which Functions are Linearly Separable?

XOR
Xg
A Xo y .
a 00 0
b 01 1
C 10 1
d 11 0 0

A multilayer perceptron
can represent XOR!

assume w, = 0 for all nodes



Perceptron: Training
*\When are we correct?
y DTz >0
*|.e., signs of prediction and label match

*In training, could ask for “margin”: insist
DTz > ¢

* A little more than what we really need



Perceptron: Training

Going forward assume labels are +1 or -1. y( ) — Zy( Q- 1
*Algorithm:

* Initialize w, = 0.
*At stept=0,...
e Select index i,

o |f y“)wT:z:(z) < 1thendo W41 = Wi + y(z)x(z)

°EIse, wt—|—1 — U]t

*What is the update to our prediction?



Perceptron: Training

* Algorithm training example:




Perceptron: Training Comparison

*We’'re used to minimizing some loss function...

*Taking one example at a time...
* Stochastic Optimization (like SGD)

*Step: wWiyr1 = Wy + y(i):zj(i)



Perceptron: Training Comparison

*So: Does this look like SGD with some loss function L?
SGD Wipq = wy — aVL(f(z,y)

Perceptron W1 = Wy + y(i)x(i) (if there is an error)

Hinge loss!




Perceptron: Analysis

*Two aspects to analysis: fitting training data + generalization

*Mistake bound:
*Hyperplane H  — x: wa — ()

* Margin (for a dataset S) R - " "
. ‘ ®e
v(S,w) = min dist(x(z),Hw) ‘o
1<1<n l °., ®
‘QfTUJ‘/HwH A0
7(S) = max (S, w) /\P o

Jw[[=1




Perceptron: Mistake Bound

* Need some information about our data:

*“Diameter”: D(S) — max Hg;”
xeS

* Mistake Bound Result:
* The total # of mistakes on a linearly separable set S is at most

(2+D(8)")(5) "

e How is this result different from our SGD result?



Perceptron: Mistake Bound Interpretation

* Mistake Bound Result:
* The total # of mistakes on a linearly separable set S is at most

(2+ D(S)*)v(S) ™"

l \ Margin: Smaller

¢ Scaling? Diameter: Controls our means harder to find
biggest step. separator

*Implications?

* Run over dataset D repeatedly. # mistakes doesn’t change
* If we keep running it, eventually we get perfect separation on a copy of D

< “ > ¢ “ “ > < “ > < >




Mistake Bound: Proof 1

*Let us prove the result.
* Intuitive idea we exploit: norm of weight vector <-> # mistakes

*Start with changes in weight norm

lwisr ||? = [Jwe + 5200 )|? ifmistake




Mistake Bound: Proof 2

*This is true for each mistake

wer || < [lwell* +2+ D(S)

*Let m, be # mistakes by t step. Start at w, (horm 0). By w,

we|| < v/my(2+ D(S)?




Mistake Bound: Proof 3

*Now we’ll also lower bound norm

*Let w be a hyperplane that separates, with unit norm.HwH =1
T ‘w QE(Zt) ‘ W cIasi:fies
w (wt+1 — wt) ( (Zt) (Zt)) correctly
T Hw || «— Norm 1
mistake

*But this is the margin for x{), so: > ~(S, w)



Mistake Bound: Proof 4

*So: UJT(

Wit1 — W) > Y(S, w)

eLet’s look at our best unit norm solution: ws, i.e one with the
maximum margin w
T

*From Cauchy-Schwartz ||th ||”LU*H > W, Wy

*Let’s set up a telescoping sum:

wi| > wy wy = Zw W — Wg—1)




Mistake Bound: Proof 5

Have: T (wy i = we) 2 9(5,)

w| > wiw = Zw W — Wg—1)

eCombine:
¢

Jwill > wlw, =) wl (wy, — wy—1) > myy(S)

k=1 \ 0 for no mistake,

eNote: V(Sa w*) _ V(S) Purple for mistake



Mistake Bound: Proof 6

50, mi(S) < lfwe]l [Jewel| < v/mi(2 + D(S)2

‘le, my(S) < v/me(2 + D(S)2)
2+ D(S5)?
oF lgeb ts us to
asy algebra gets u my < 7(5)2 :

*Result holds for any t!



Break & Quiz
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Q1-1: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a
finite number of training steps.

B. A single perceptron can compute the XOR function.

1. Both statements are true.
2.  Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.



Q1-1: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a
finite number of training steps.

B. A single perceptron can compute the XOR function.

1. Both statements are true.

2.  Both statements are false. _
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Multilayer Neural Network

*Input: two features from spectral analysis of a spoken sound
*Output: vowel sound occurring in the context “h  d”

output units hca‘ d. 4 Who’dhood

hidden units

input units

figure from Huang & Lippmann, NIPS 1988
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Neural Network Components

An (Z+1)-layer network

First layer Output layer

\ \
[ |

|

000600 |

Input Hidden layer h?



Feature Encoding for NNs

*Nominal features usually a one hot encoding

ik

*Ordinal features: use a thermometer encoding
1 1 1
small= IO] medium= [1 large= [1‘
0 0. 1

*Real-valued features use individual input units (may want to
scale/normalize them first though)
precipitation =[0.68 ] .@

o)
|
o RO O
~
|
-0 0 O

So-2

coor




Output Layer: Examples

*Regression:
* Linear units: no nonlinearity

* Multi-dimensional regression:
e Linear units: no nonlinearity

Output layer
I

|

- 990009 |

Output layer
I

[




Output Layer: Examples

*Binary classification:
* Corresponds to using logistic regression on

 Multiclass classification:
e where

Output layer Output layer

\ \
| [ |

- 990009 |



Hidden Layers

*Neuron takes weighted linear combination of the previous
representation layer
* Outputs one value for the next layer




Hidden Layers

*Outputs

*Typical activation function
* Threshold:
* Sigmoid:
*Tanh:

*Why not linear activation functions?
* Model would be linear.




MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2
Hidden layer

3 neurons
Input

— 2 (1)
X1

x € R? WD
12

%%



MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

W
X, /22

idden layer
3 heurons
Input
X1 (1)
R
X € R h2 — O'( 2 XZWQ(JD + bz)
=1



MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer

3 heurons
Input



MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
Input mM=3 neurons
Sigmoid activation
= o( Z xw(l) + by) (2) 9
*1 Output
(2)
hz—o(wa(l)+b2) > —G(Zhw(2)+b)
X
? (2)
= o( Z xw(l) + b3) No activation function

at output layer!



Multiclass Classification Output

*Create k output units
e Use softmax (just like logistic regression)

Hidden layer
mM=3 neurons
Input Output
N ; p(y|x) = softmax(f)
X 1
_— o
ok
%9) z,- expfl:(x)

/fk



Multiclass Classification Examples

*Protein classification (Kaggle challenge)
*|mageNet

Nucleoplasm
Nuclear membrane
Nucleoli

Nucleoli fibrillar

Nuclear speckles
Nu(\'lf\n.— hAaAds An

@

0o NOoO A WN =2

i G N e
a b ON -2 © -

a
n

— watercraft — sailing vessel —  sailboat trimaran
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Q2-1: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs
for new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1

neuron in the output has a total of 55 connections.

1. Both statements are true.
2.  Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.



Q2-1: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs
for new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1

neuron in the output has a total of 55 connections.

First layer Second layer Output layer

1. Both statements are true. ——

2. Both statements are false.

3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false. _

Input x  Hidden variables h' h?

44



Outline

*Training Neural Networks
* SGD, Computing Gradients, Backpropagation



Training Neural Networks

*Training the usual way. Pick a loss and optimize
*Example: 2 scalar weights

() X .0 (X/
B
LS

¥

/7

arror

bias 2 5 weight

figure from Cho & Chow, Neurocomputing 1999
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Training Neural Networks

*Algorithm:
et D = {(a'",yW), ... (&™), y"™)}
* Initialize weights
* Until stopping criteria met,
e For each training point (z'¥,y")

* Compute: fnetwork (x(d) ) < Forward Pass

oL@ 9L L)
Owg = Owy ' Ow,,

T
* Compute gradient: VLY (w) = [ ] ~—— Backward Pass

* Update weights: W — W — onL(Z) (w)



Computing Gradients

W11

W21

0C (X, y)

6w11

., Want to compute

=)



Computing Gradients

W11

=2

W21

o —y log(¥)
1141 + sigmoid function —(1 —y)log(1—79)

— 5 > 5\} > f X,
- > (X, )




Computing Gradients

W11
x1 5\,
X2 :

W21

—y log(y
Wi1X1 v log(3)

+ sigmoid function —(1—-vy)log(1—-9)
— 7 > ¥ * (X,
_— > (X, )

dy , X,y lL—-y 'y
— =0'(2) — = ~ 7
07 ay -y y
al _al dy 0z

oWy ﬁ 9z dwy1

e By chain rule:



Computing Gradients

W11
xl 5\,
X2 :

W21
o —y log(y)
11°1 >+ sigmoid function —(1=y)log(1—-9)
—_— . P * £(X,y)

W31X2 09 @) or (X,y) l—-y 'y

— =0\Z A — NN

07 dy -y )

dl al dy
e By chain rule: = = A1



Computing Gradients

W14
xl 5‘,
X2 :

W21

—vy log(y
Wi1X1 v 1og(3)

sigmoid function —(1—=y)log(1—9)
W21X2 >+_* y * ¥ " f(X,y)
. -
2 = 00 = o1 - o(2)

dl ol . R
zﬁ y(1 —y)x

e By chain rule: AW



Computing Gradients

W11
xl : 5‘,
X2

W31

—vy log(¥y
Wi1X4 v log(3)

+ sigmoid function —(1—-vy)log(1—79)
— Z > Y * (X,
_— > A (X, )

Q = 0'(z) = o(2)(1 — 0(2))
07

ol l—y y__ .
- ] —

e By chain rule:



Computing Gradients

W11
xl 5‘,
X2 :

W21

o —y log(y)
1171 + sigmoid function —(1—y)log(1-7)
— 7 . 9 * (X
W21X2 > 0y f( ,y)
Fe 6'(z) = o(z)(1 — 0(2))

al
0wy,

= O —yx

* By chain rule:



Computing Gradients

W11
xl j‘,
X2 :

W21

o —ylog(¥)
1141 + 3|gm0|d function —(1-y)log(1-9)
_— . .
- > (X, y)

— = 0'(2) = o(z)(1 — 0(2))
az

ol  al 3y

By chain rule: ay 5, W11 = (¥ — yIwqq

6x1



Computing Gradients: More Layers

(2) —y log(y)
SlngId function —(1—-y)log(1—-79)
>+—* & * L(%,))
W'S)alz y
— =0'(2) = o(z)(1 — 0(2))
az
al dl

e By chain rule: 2o
11

= @ —yIwr, e = - Y)Wy



Computing Gradients: More Layers

e By chain rule:



Computing Gradients: More Layers

e By chain rule:



Computing Gradients: More Layers

W21
0(211)
a > all al > l(x’y)
air e 2)
0z, o (211) da,, & —yIw;

* By chain rule: ﬂ_ ol 6a11+ al day,

axl - aall axl aalz axl




Backpropagation

*Now we can compute derivatives for particular neurons, but
we want to automate this process

*Set up a computation graph and run on the graph




Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Sharon Li o



