CS 760: Machine Learning
Neural Networks

Kirthi Kandasamy

University of Wisconsin-Madison

February 22, 2023 1

Outline

*Perceptron Algorithm
*Definition, Training, Loss Equivalent, Mistake Bound

Neural Networks
*Introduction, Setup, Components, Activations

*Training Neural Networks
* SGD, Computing Gradients, Backpropagation

Outline

*Perceptron Algorithm
*Definition, Training, Loss Equivalent, Mistake Bound

Neural networks: Origins

* Artificial neural networks, connectionist models

* |nspired by interconnected neurons in biological systems
* Simple, homogenous processing units

junctions
with other cells)
Cell body Dendrite
(soma) (ivem
from oth Ils) Dendrit
(from th
nnnnnn)

(passes messages awa
from the cell body to
other neurons, muscles,
or glands)

Action potential \
(electrical signal

traveling down Myelin sheath
the axon) (covers the axon of some
neurons and helps speed
neural impulses)

Perceptron: Simple Network

Input
X1
| Wi
4% 2 W)\
Y]4 Output
LW /) 1 UJT.CC Z 0
W, y(x) = 0 oth :
X, otherwise

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

Perceptron: Components

Input
X1
W1
454 xzk
% ’é \AA Output
Iy 7 () 1 wlz >0
:L‘ _
g wy Y 0 otherwise
d
> A
f = wlr U(Cl) — 1 a=20 y(:z:) — O-(wa)

0 otherwise

Activation Function

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960] 6

Perceptron: Representational Power

*Perceptrons can represent only linearly separable concepts

(@) 1 wlz >0

:L‘ _

q 0 otherwise
*Decision boundary given by: / P

Which Functions are Linearly Separable?

O o T o

O o T o

AND
X1 X

00
01
10
11

P O OO0 <

X7 X

00
01
10
11

R R RO <

Which Functions are Linearly Separable?

XOR
Xg
A Xo y .
a 00 0
b 01 1
C 10 1
d 11 0 0

A multilayer perceptron
can represent XOR!

assume w, = 0 for all nodes

Perceptron: Training
*\When are we correct?
y DTz >0
*|.e., signs of prediction and label match

*In training, could ask for “margin”: insist
DTz > ¢

* A little more than what we really need

Perceptron: Training

Going forward assume labels are +1 or -1. y() — Zy(Q- 1
*Algorithm:

* Initialize w, = 0.
*At stept=0,...
e Select index i,

o |f y“)wT:z:(z) < 1thendo W41 = Wi + y(z)x(z)

°EIse, wt—|—1 — U]t

*What is the update to our prediction?

Perceptron: Training

* Algorithm training example:

Perceptron: Training Comparison

*We’'re used to minimizing some loss function...

*Taking one example at a time...
* Stochastic Optimization (like SGD)

*Step: wWiyr1 = Wy + y(i):zj(i)

Perceptron: Training Comparison

*So: Does this look like SGD with some loss function L?
SGD Wipq = wy — aVL(f(z,y)

Perceptron W1 = Wy + y(i)x(i) (if there is an error)

Hinge loss!

Perceptron: Analysis

*Two aspects to analysis: fitting training data + generalization

*Mistake bound:
*Hyperplane H — x: wa — ()

* Margin (for a dataset S) R - " "
. ‘ ®e
v(S,w) = min dist(x(z),Hw) ‘o
1<1<n l °., ®
‘QfTUJ‘/HwH A0
7(S) = max (S, w) /\P o

Jw[[=1

Perceptron: Mistake Bound

* Need some information about our data:

*“Diameter”: D(S) — max Hg;”
xeS

* Mistake Bound Result:
* The total # of mistakes on a linearly separable set S is at most

(2+D(8)")(5) "

e How is this result different from our SGD result?

Perceptron: Mistake Bound Interpretation

* Mistake Bound Result:
* The total # of mistakes on a linearly separable set S is at most

(2+ D(S)*)v(S) ™"

l \ Margin: Smaller

¢ Scaling? Diameter: Controls our means harder to find
biggest step. separator

*Implications?

* Run over dataset D repeatedly. # mistakes doesn’t change
* If we keep running it, eventually we get perfect separation on a copy of D

< “ > ¢ “ “ > < “ > < >

Mistake Bound: Proof 1

*Let us prove the result.
* Intuitive idea we exploit: norm of weight vector <-> # mistakes

*Start with changes in weight norm

lwisr ||? = [Jwe + 5200)|? ifmistake

Mistake Bound: Proof 2

*This is true for each mistake

wer || < [lwell* +2+ D(S)

*Let m, be # mistakes by t step. Start at w, (horm 0). By w,

we|| < v/my(2+ D(S)?

Mistake Bound: Proof 3

*Now we’ll also lower bound norm

*Let w be a hyperplane that separates, with unit norm.HwH =1
T ‘w QE(Zt) ‘ W cIasi:fies
w (wt+1 — wt) ((Zt) (Zt)) correctly
T Hw || «— Norm 1
mistake

*But this is the margin for x{), so: > ~(S, w)

Mistake Bound: Proof 4

*So: UJT(

Wit1 — W) > Y(S, w)

eLet’s look at our best unit norm solution: ws, i.e one with the
maximum margin w
T

*From Cauchy-Schwartz ||th ||”LU*H > W, Wy

*Let’s set up a telescoping sum:

wi| > wy wy = Zw W — Wg—1)

Mistake Bound: Proof 5

Have: T (wy i = we) 2 9(5,)

w| > wiw = Zw W — Wg—1)

eCombine:
¢

Jwill > wlw, =) wl (wy, — wy—1) > myy(S)

k=1 \ 0 for no mistake,

eNote: V(Sa w*) _ V(S) Purple for mistake

Mistake Bound: Proof 6

50, mi(S) < lfwe]l [Jewel| < v/mi(2 + D(S)2

‘le, my(S) < v/me(2 + D(S)2)
2+ D(S5)?
oF lgeb ts us to
asy algebra gets u my < 7(5)2 :

*Result holds for any t!

Break & Quiz

24

Q1-1: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a
finite number of training steps.

B. A single perceptron can compute the XOR function.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.

Q1-1: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a
finite number of training steps.

B. A single perceptron can compute the XOR function.

1. Both statements are true.

2. Both statements are false. _
3. Statement A is true, Statement B is false. _

4. Statement B is true, Statement A is false.

Outline

Neural Networks
*Introduction, Setup, Components, Activations

Multilayer Neural Network

*Input: two features from spectral analysis of a spoken sound
*Output: vowel sound occurring in the context “h d”

output units hca‘ d. 4 Who’dhood

hidden units

input units

figure from Huang & Lippmann, NIPS 1988

ions

Reg

1S10N

Neural Network Dec

Figure from Huang & Lippmann, NeurlPS 1988

4000
2000

who’d hood

head hid

F2 (Hz)

1000}

F1 (Hz)

29

Neural Network Components

An (Z+1)-layer network

First layer Output layer

\ \
[|

|

000600 |

Input Hidden layer h?

Feature Encoding for NNs

*Nominal features usually a one hot encoding

ik

*Ordinal features: use a thermometer encoding
1 1 1
small= IO] medium= [1 large= [1‘
0 0. 1

*Real-valued features use individual input units (may want to
scale/normalize them first though)
precipitation =[0.68] .@

o)
|
o RO O
~
|
-0 0 O

So-2

coor

Output Layer: Examples

*Regression:
* Linear units: no nonlinearity

* Multi-dimensional regression:
e Linear units: no nonlinearity

Output layer
I

|

- 990009 |

Output layer
I

[

Output Layer: Examples

*Binary classification:
* Corresponds to using logistic regression on

 Multiclass classification:
e where

Output layer Output layer

\ \
| [|

- 990009 |

Hidden Layers

*Neuron takes weighted linear combination of the previous
representation layer
* Outputs one value for the next layer

Hidden Layers

*Outputs

*Typical activation function
* Threshold:
* Sigmoid:
*Tanh:

*Why not linear activation functions?
* Model would be linear.

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2
Hidden layer

3 neurons
Input

— 2 (1)
X1

x € R? WD
12

%%

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

W
X, /22

idden layer
3 heurons
Input
X1 (1)
R
X € R h2 — O'(2 XZWQ(JD + bz)
=1

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer

3 heurons
Input

MLPs: Multilayer Perceptron

*Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer
Input mM=3 neurons
Sigmoid activation
= o(Z xw(l) + by) (2) 9
*1 Output
(2)
hz—o(wa(l)+b2) > —G(Zhw(2)+b)
X
? (2)
= o(Z xw(l) + b3) No activation function

at output layer!

Multiclass Classification Output

*Create k output units
e Use softmax (just like logistic regression)

Hidden layer
mM=3 neurons
Input Output
N ; p(y|x) = softmax(f)
X 1
_— o
ok
%9) z,- expfl:(x)

/fk

Multiclass Classification Examples

*Protein classification (Kaggle challenge)
*|mageNet

Nucleoplasm
Nuclear membrane
Nucleoli

Nucleoli fibrillar

Nuclear speckles
Nu(\'lf\n.— hAaAds An

@

0o NOoO A WN =2

i G N e
a b ON -2 © -

a
n

— watercraft — sailing vessel — sailboat trimaran

41

Break & Quiz

42

Q2-1: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs
for new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1

neuron in the output has a total of 55 connections.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false.

Q2-1: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs
for new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1

neuron in the output has a total of 55 connections.

First layer Second layer Output layer

1. Both statements are true. ——

2. Both statements are false.

3. Statement A is true, Statement B is false.

4. Statement B is true, Statement A is false. _

Input x Hidden variables h' h?

44

Outline

*Training Neural Networks
* SGD, Computing Gradients, Backpropagation

Training Neural Networks

*Training the usual way. Pick a loss and optimize
*Example: 2 scalar weights

() X .0 (X/
B
LS

¥

/7

arror

bias 2 5 weight

figure from Cho & Chow, Neurocomputing 1999

46

Training Neural Networks

*Algorithm:
et D = {(a'",yW), ... (&™), y"™)}
* Initialize weights
* Until stopping criteria met,
e For each training point (z'¥,y")

* Compute: fnetwork (x(d)) < Forward Pass

oL@ 9L L)
Owg = Owy ' Ow,,

T
* Compute gradient: VLY (w) = [] ~—— Backward Pass

* Update weights: W — W — onL(Z) (w)

Computing Gradients

W11

W21

0C (X, y)

6w11

., Want to compute

=)

Computing Gradients

W11

=2

W21

o —y log(¥)
1141 + sigmoid function —(1 —y)log(1—79)

— 5 > 5\} > f X,
- > (X,)

Computing Gradients

W11
x1 5\,
X2 :

W21

—y log(y
Wi1X1 v log(3)

+ sigmoid function —(1—-vy)log(1—-9)
— 7 > ¥ * (X,
_— > (X,)

dy , X,y lL—-y 'y
— =0'(2) — = ~ 7
07 ay -y y
al _al dy 0z

oWy ﬁ 9z dwy1

e By chain rule:

Computing Gradients

W11
xl 5\,
X2 :

W21
o —y log(y)
11°1 >+ sigmoid function —(1=y)log(1—-9)
—_— . P * £(X,y)

W31X2 09 @) or (X,y) l—-y 'y

— =0\Z A — NN

07 dy -y)

dl al dy
e By chain rule: = = A1

Computing Gradients

W14
xl 5‘,
X2 :

W21

—vy log(y
Wi1X1 v 1og(3)

sigmoid function —(1—=y)log(1—9)
W21X2 >+_* y * ¥ " f(X,y)
. -
2 = 00 = o1 - o(2)

dl ol . R
zﬁ y(1 —y)x

e By chain rule: AW

Computing Gradients

W11
xl : 5‘,
X2

W31

—vy log(¥y
Wi1X4 v log(3)

+ sigmoid function —(1—-vy)log(1—79)
— Z > Y * (X,
_— > A (X,)

Q = 0'(z) = o(2)(1 — 0(2))
07

ol l—y y__ .
-] —

e By chain rule:

Computing Gradients

W11
xl 5‘,
X2 :

W21

o —y log(y)
1171 + sigmoid function —(1—y)log(1-7)
— 7 . 9 * (X
W21X2 > 0y f(,y)
Fe 6'(z) = o(z)(1 — 0(2))

al
0wy,

= O —yx

* By chain rule:

Computing Gradients

W11
xl j‘,
X2 :

W21

o —ylog(¥)
1141 + 3|gm0|d function —(1-y)log(1-9)
_— . .
- > (X, y)

— = 0'(2) = o(z)(1 — 0(2))
az

ol al 3y

By chain rule: ay 5, W11 = (¥ — yIwqq

6x1

Computing Gradients: More Layers

(2) —y log(y)
SlngId function —(1—-y)log(1—-79)
>+—* & * L(%,))
W'S)alz y
— =0'(2) = o(z)(1 — 0(2))
az
al dl

e By chain rule: 2o
11

= @ —yIwr, e = - Y)Wy

Computing Gradients: More Layers

e By chain rule:

Computing Gradients: More Layers

e By chain rule:

Computing Gradients: More Layers

W21
0(211)
a > all al > l(x’y)
air e 2)
0z, o (211) da,, & —yIw;

* By chain rule: ﬂ_ ol 6a11+ al day,

axl - aall axl aalz axl

Backpropagation

*Now we can compute derivatives for particular neurons, but
we want to automate this process

*Set up a computation graph and run on the graph

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Sharon Li o

