
CS/ECE/STAT-861: Theoretical Foundations of Machine Learning
University of Wisconsin–Madison, Fall 2024 Instructor: Kirthevasan Kandasamy

Homework 0. Due 09/14/2024, 11.59 pm

Homework 0 serves as a diagnostic tool to assess your background knowledge and mathematical maturity for this
course. It also familiarizes you with course expectations as you advance to more complex topics. While you are not
expected to know all the solutions right away, you should be able to solve most of the questions with reasonable effort,
using references as needed.

Instructions:

1. Homework is due on Canvas by 11.59 pm on the due date. Please plan to submit well before the deadline. Refer
to the course website for policies on late submission.

2. Homework must be typeset using appropriate software; handwritten and scanned submissions will not be ac-
cepted. If you typeset your homework using LATEX, you will receive 5 percent extra credit.

3. Your solutions will be evaluated on correctness, clarity, and conciseness.

4. Unless otherwise specified, you may use any result we have already proved in class. Clearly state which result
you are using.

5. Solutions to some of the problems may be found in the recommended textbook or other resources. Unless stated
otherwise, you should try the problems on your own instead of searching for answers. If you used any external
references, please cite them in your submission.

6. Collaboration: You are allowed to collaborate on problem 2 of this homework in groups of size up to 3. If you
do so, please indicate your collaborators at the top of your solution. You may not collaborate on problem 1.
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1 Estimating the mean of a normal distribution

You may not collaborate on problem 1.

We are given n independent samples S = {X1, . . . , Xn}, where each Xi is sampled from a normal distribution
N (µ, σ2) with unknown mean µ, but known variance σ2. We wish to estimate the mean µ. An estimator µ̂ : Rn → R
is a function of the data collected. We will quantify the performance of an estimator via the risk R, which is simply
the expected squared error of the estimator,

R(µ̂, µ) = E[(µ̂(S)− µ)2].

Here, the expectation is with respect to the randomness in the data.

1. [2 pts] (Bias–variance decomposition) First, show that the following holds for any estimator µ̂,

R(µ̂, µ) = (E[µ̂(S)]− µ)2︸ ︷︷ ︸
bias

+ E[(µ̂(S)− E[µ̂(S)])2]︸ ︷︷ ︸
variance

.

2. [2 pts] (Sample mean) The most natural estimator for µ is the sample mean µ̂SM, defined below.

µ̂SM(S) =
1

n

n∑
i=1

Xi.

Using the result of part 1, show that R(µ̂SM, µ) = σ2/n.

3. [4 pts] (Concentration) While the risk measures how well an estimator does in expectation, sometimes we also
wish to know that µ̂SM is within some margin of error ε of the true mean µ with high probability. Prove the
following result for any ε > 0:

P(|µ̂SM(S)− µ| > ε) ≤ 2 exp

(
−nε2

2σ2

)
.

where the probability P is with respect to the randomness in the data.

You may use the following facts about normal random variables:

• If X1, . . . , Xn are normal, then so is
∑n
i=1Xi. (You will need to compute the mean and variance.)

• If X are normal, then so is aX for any a ∈ R. (You will need to compute the mean and variance.)

• If Z ∼ N (0, 1) is a standard normal random variable, then P(|Z| > ε) ≤ 2e−ε
2/2.

4. [2 pts] (Sample complexity) Suppose you are given some ε > 0 and δ ∈ (0, 1). You wish to collect enough
samples so that your estimator is within an ε margin of error with probability at least δ. Show that if n ≥
2σ2

ε2 log(2/δ), we will have the following guarantee: P(|µ̂SM − µ| > ε) ≤ δ.

5. [2 pts] (An alternative estimator) The sample mean is just one of several possible estimators for µ. Student A
proposes the following alternative estimator µ̂α with some parameter α ∈ (0, 1),

µ̂α(S) =
α

n

n∑
i=1

Xi.

Using the result from part 1, compute the risk of the estimator µ̂α. Note that, unlike the sample mean, the risk
of µ̂α depends on the true mean µ.

6. [2 pts] Show that there exists at least one value for µ such that µ̂α is a strictly better estimator than µ̂SM. That
is, there exists µ ∈ R, such that, for all α ∈ (0, 1), we have R(µ̂α, µ) < R(µ̂SM, µ).
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7. [4 pts] (Maximum risk) Despite the result from part 6, student B is not satisfied with student A’s proposition, as
an estimator should perform well for all values of µ, and not just for one value of µ. In particular, she argues
that the worst-case risk over all µ should be small. She proposes the following criterion, the maximum risk R,
as a way to measure how well an estimator performs.

R(µ̂) = sup
µ∈R

R(µ̂, µ) = sup
µ∈R

E[(µ̂− µ)2].

(a) Compute R(µ̂SM) and R(µ̂α).

(b) Based on the above answers, which estimator would you choose?

8. [5 pts] (Maximum risk over a bounded domain) Suppose we had prior knowledge that µ ∈ [0, 1]. While student
A agrees with student B’s criterion, she argues that we should modify the definition of the maximum risk to
incorporate this prior knowledge. She proposes the following definition instead:

R′(µ̂) = sup
µ∈[0,1]

R(µ̂, µ) = sup
µ∈[0,1]

E[(µ̂− µ)2].

(a) Compute R(µ̂SM) and R(µ̂α), the maximum risk for the two estimators discussed above.

(b) Is there any particular value of α (possibly dependent on n and σ) for which R′(µ̂α) < R′(µ̂SM)?

(c) Based on the above answer, which estimator would you choose? Intuitively, explain the discrepancy in the
conclusions in part 7 and part 8.

N.B. In the first few lectures, we will study empirical risk minimization (ERM), a learning method which returns a
model which performs well on observed data. We will use concentration tools, similar to part 3 and 4, to establish
conditions under which ERM does well on future, unseen data.

Later in class, we will study minimax optimality, where our goal is to design algorithms with the smallest maximum
risk across a class of distributions. We will begin with simple mean estimation problems, like the above, and extend
these concepts to regression, classification, density estimation, online learning, and bandits.

2 Understanding exploration–exploitation trade-offs

Consider the following game which proceeds over T rounds. You have access to two normal distributions ν(1) =
N (µ1, σ

2) and ν(2) = N (µ2, σ
2), where σ2 is known but µ1, µ2 ∈ [0, 1] are not. On each round t, you have the

opportunity to earn a monetary reward by drawing a sample from either distribution. You choose It ∈ {1, 2}, where
It = i corresponds to drawing a sample Xt from νi = N (µi, σ

2), and earning $Xt. If Xt < 0, you should pay that
amount instead. Your total cumulative reward, over T rounds is

∑T
t=1Xt. We will measure how well we perform via

our average regret, defined below:

RT = max{µ1, µ2} −
1

T

T∑
t=1

Xt.

We wish to design an algorithm whose average regret vanishes1 with T in expectation, i.e E[RT ]→ 0 as T →∞.

Algorithm: A student proposes the following simple algorithm. First sample each of the distributions N times (where
N < T/2). Then, for the remaining T − 2N rounds, sample the distribution with the highest observed sample mean

1Intuitively, if we knew a priori which mean was larger, we will always pull the arm with the highest mean and have E[RT ] = 0 as
1
T
E[
∑

tXt] = max{µ1, µ2}. If E[RT ] → 0, this means we are able to learn which of the two distributions has a larger mean and converge
towards the correct answer as we collect more samples.
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using the N samples. That is, It is chosen as follows:

It =


1 if t ≤ N,
2 if N + 1 ≤ t ≤ 2N,

1 if t > 2N and µ̂1 ≥ µ̂2,

2 if t > 2N and µ̂1 < µ̂2.

where, µ̂1 =
1

N

N∑
t=1

Xt, µ̂2 =
1

N

2N∑
t=N+1

Xt,

For what follows, let ∆ = |µ1 − µ2| denote the gap between the two means.

1. [5 pts] (Regret decomposition) Establish the following identity for the expected average regret:

E[RT ] =
N∆

T
+

(T − 2N)∆

T
Φ

(
−∆

√
N

2σ2

)

Here, Φ(x) = PZ∼N (0,1)(Z < x) is the CDF of the standard normal distribution.

2. [2 pts] Using the result from part 1 and the fact that µ1, µ2 ∈ [0, 1], show the following upper bound on the
expected average regret.

E[RT ] ≤ N

T
+ ∆ exp

(
−N∆2

4σ2

)
.

You may use the following property about standard normals, which is a one-sided version of the inequality given
in problem 1. If Z ∼ N (0, 1), then P(Z < −ε) ≤ e−ε2/2.

3. [3 pts] Use the result in part 2 to show the following upper bound.

E[RT ] ≤ N

T
+ C

σ√
N
, where, C =

√
2e−1/2.

Hint: Consider the function f(x) = log(x)− αx2, where α > 0. What is the maximizer of f?

4. [2 pts] (An optimal choice of N .) Specify a choice for N , depending only on σ and T , so that the upper bound
in part 3 is minimized. Are you able to achieve E[RT ]→ 0 as T →∞? If so, at what rate does it go to zero?

5. [2 pts] (Exploration–exploitation trade-off.) Let N? denote the optimal choice in part 4. In words, explain what
would happen had we chosen N � N? or N � N?.

N.B. Later in class, we will study several models for adaptive decision-making. The model discussed in this question
is an example of a stochastic bandit, which is one paradigm for decision-making. In bandit settings, we often have to
trade-off between exploration (learning about the environment) and exploitation (leveraging what we have learned to
maximize rewards). The above algorithm is a simple, albeit sub-optimal, approach that separates exploration (the first
2N rounds) from exploitation (the remaining T − 2N rounds). In class, we will look at better algorithms to manage
this trade-off which have faster rates of convergence.
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