
CS/ECE/STAT-861: Theoretical Foundations of Machine Learning
University of Wisconsin–Madison, Fall 2024 Instructor: Kirthevasan Kandasamy

Homework 1. Due 09/27/2024, 11.59 pm

Instructions:

1. Homework is due on Canvas by 11.59 pm on the due date. Please plan to submit well before the deadline. Refer
to the course website for policies on late submission.

2. Homework must be typeset using appropriate software; handwritten and scanned submissions will not be ac-
cepted. If you typeset your homework using LATEX, you will receive 5 percent extra credit.

3. Your solutions will be evaluated on correctness, clarity, and conciseness.

4. Unless otherwise specified, you may use any result we have already proved in class. Clearly state which result
you are using.

5. Solutions to some of the problems may be found in the recommended textbook or other resources. Unless stated
otherwise, you should try the problems on your own instead of searching for answers. If you used any external
references, please cite them in your submission.

6. Collaboration: You may collaborate in groups of size up to 3 on this homework. If you collaborate, please
indicate your collaborators at the beginning of your homework. In any case, you must write the solution in your
own words.
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1 PAC Learning and ERM

1. [4 pts] (What is wrong with this proof?) We perform empirical risk minimization (ERM) in a finite hypothesis
classH using an i.i.d dataset S of n points. Let h? ∈ argminh∈HR(h) be an optimal classifier in the class, and
let ĥ ∈ argminh∈H R̂(h) minimize the empirical risk of the dataset S. A student offers the following proof and
claims that it is possible to bound the estimation error without any dependence on |H|.

(i) Let B1 = {R̂(h?)−R(h?) > ε} denote the bad event that the empirical risk of h? is ε larger than its true
risk. By Hoeffding’s inequality we have P(B1) ≤ e−2nε2 .

(ii) Similarly, Let B2 = {R(ĥ)− R̂(ĥ) > ε} denote the bad event that the empirical risk of ĥ is ε smaller than
its true risk. By Hoeffding’s inequality we have P(B2) ≤ e−2nε2 .

As R̂(ĥ) ≤ R̂(h?), we have,

R(ĥ)−R(h?) ≤ R(ĥ)− R̂(ĥ) + R̂(h?)−R(h?) ≤ 2ε

under the good event G = Bc1 ∩ Bc2 which is true with probability at least 1 − 2e−2nε2 . This result does not
depend on |H| and even applies to infinite hypothesis classes provided there exists h? which minimizes the risk.

Which sentence below best describes the mistake (if any) with this proof? State your answer with an explanation.
If you believe there is a mistake, be as specific as possible as to what the mistake is.

(a) Both statement (i) and statement (ii) are incorrect.

(b) Only statement (i) is incorrect. Statement (ii) is correct.

(c) Only statement (ii) is incorrect. Statement (i) is correct.

(d) Both statements are correct. There is nothing wrong with this proof.

2. [6 pts] (PAC bound) Prove the following result which was presented but not proved in class.

Let H be a hypothesis class with finite Radn(H). Let ĥ be obtained via ERM using n i.i.d samples. Let ε > 0.
Then, there exists universal constants C1, C2 such that with probability at least 1− 2e−2nε2 , we have

R(ĥ) ≤ inf
h∈H

R(h) + C1Radn(H) + C2ε.

3. [3 pts] (Sample complexity based on VC dimension) Say H has a finite VC dimension d. Let δ ∈ (0, 1). Using
the result/proof in part 2 or otherwise, show that there exist universal constants C3, C4 such that when n ≥ d,
the following bound holds with probability at least 1− δ.

R(ĥ) ≤ inf
h∈H

R(h) + C3

√
d log(n/d) + d

n
+ C4

√
1

n
log

(
2

δ

)
.

4. [3 pts] (Bound on the expected risk) The above results show that R(ĥ) is small with high probability. Using
the results/proofs in parts 2 and 3 or otherwise, show that it is also small in expectation. Specifically, show that
there exist universal constants C5, C6 such that the following bound holds.

E[R(ĥ)] ≤ inf
h∈H

R(h) + C5

√
d log(n/d) + d

n
+ C6

√
log(4n)

n
+

1√
n
.

Here, the expectation is with respect to the dataset S.

For parts 2, 3, and 4, of this question, if you can prove a bound that has similar higher order terms but differs in
additive/multiplicative constants or poly-logarithmic factors, you will still receive full credit.
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2 Rademacher complexity and VC dimension

1. [5 pts] (Empirical Rademacher complexity) Consider a binary classification problem with the 0–1 loss `(y1, y2) =
1(y1 6= y2) and where X = R. Consider the following dataset S = {(x1 = 0, y1 = 0), (x2 = 1, y2 = 1)}.

(a) LetH1 = {ha(x) = 1(x ≥ a); a ∈ R} be the hypothesis class of one-sided threshold functions. Compute
the empirical Rademacher complexity R̂ad(S,H1).

(b) LetH2 = {ha(x) = 1(x ≥ a); a ∈ R} ∪ {ha(x) = 1(x ≤ a); a ∈ R} be the class of two-sided threshold
functions. Compute the empirical Rademacher complexity R̂ad(S,H2).

(c) Are the values computed above consistent with the fact thatH1 ⊂ H2?

2. [6 pts] (Reading exercise, VC dimension of linear classifiers) Consider a binary classification problem where
X = RD is the D-dimensional Euclidean space. The class of linear classifiers is given by H = {hw,b(x) =
1[w>x+ b ≥ 0];w ∈ RD, b ∈ R}. Prove that the VC dimension of this class is dH = D + 1.

You may read the proof in either SB or MRT, and reproduce it in your own words.

3 Sauer’s lemma for interval classifiers

1. (Interval classifiers) Let X = R. Consider the class of interval classifiers, given by

H = {ha,b(x) = 1(a ≤ x ≤ b); a, b ∈ R, a ≤ b}.

(a) [4 pts] What is the VC dimension d of this class?

(b) [8 pts] Show that Sauer’s lemma is tight for this class. That is, for all n, show that g(n,H) =
∑d
i=0

(
n
i

)
.

2. (Union of interval classifiers) Let X = R. Consider the class of the union of K interval classifiers, given by

H = {ha,b(x) = 1(∃k ∈ {1, . . . ,K} s.t ak ≤ x ≤ bk); a, b ∈ Rk, ak ≤ bk∀ k}.

(a) [4 pts] What is the VC dimension d of this class?

(b) [8 pts] Show that Sauer’s lemma is tight for this class. That is, for all n, show that g(n,H) =
∑d
i=0

(
n
i

)
.

Hint: The following identity, which we used in the proof of Sauer’s lemma, may be helpful.

∀m > k,

(
m

k

)
=

(
m− 1

k

)
+

(
m− 1

k − 1

)
.

3. [6 pts] (Tightness of Sauer’s lemma) Prove the following statement about the tightness of Sauer’s lemma when
X = R: For all d > 0, there exists a hypothesis class H ⊂ {h : R→ {0, 1}} with VC dimension dH = d such
that, for all dataset sizes n > 0, we have g(n,H) =

∑d
i=0

(
n
i

)
. Note that the hypothesis class H could depend

on d but not on n.

Hint: There are many ways to solve this. One approach will be to use the results from part 2 which will allow
you to prove the results for even d. You should consider a different hypothesis class to show this for odd d.

An alternative approach is to prove the following more general statement: “For any set X such that |X | ≥ d,
there exists a hypothesis classH of VC dimension d such that for all n ≤ |X |, we have g(n,H) =

∑d
i=0

(
n
i

)
”.
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4 PAC lower bounds for normal mean estimation

We are given n independent samples S = {X1, . . . , Xn}, where each Xi is sampled from a normal distribution
N (µ, σ2) with unknown mean µ, but known variance σ2. Let ε > 0 be given. We wish to design an estimator
µ̂ : Rn → R which is ε close to µ with high probability. In this question, you will show that the minimax risk R?n,
defined below, satisfies,

R?n
∆
= inf

µ̂
sup
µ∈R

P(|µ̂(S)− µ| > ε) = 2

(
1− Φ

(
ε
√
n

σ

))
.

Here, Φ(x) = PZ∼N (0,1)(Z < x) is the CDF of the standard normal distribution.

1. [3 pts] (Upper bound) Design an estimator µ̂ for µwhich satisfies supµ∈R P(|µ̂(S)−µ| > ε) = 2
(

1− Φ
(
ε
√
n
σ

))
.

2. [6 pts] (Lower bound) Next, show that

inf
µ̂

sup
µ∈R

P(|µ̂(S)− µ| > ε) ≥ 2

(
1− Φ

(
ε
√
n

σ

))
.

Hint. Consider the Bayesian model, where we first sample µ ∼ N (0, τ2) and then sample n i.i.d points S
from N (µ, σ2). Then, the posterior for µ conditioned on S follows the normal distribution N (µτ , σ

2
τ ) where,

µτ = n/σ2

n/σ2+1/τ2
1
n

∑n
i=1Xi and σ2

τ = 1
n/σ2+1/τ2 .
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