
CS/ECE/STAT-861: Theoretical Foundations of Machine Learning
University of Wisconsin–Madison, Fall 2024 Instructor: Kirthevasan Kandasamy

Homework 2. Due 10/12/2024, 11.59 pm

Instructions:

1. Homework is due on Canvas by 11.59 pm on the due date. Please plan to submit well before the deadline. Refer
to the course website for policies on late submission.

2. Homework must be typeset using appropriate software; handwritten and scanned submissions will not be ac-
cepted. If you typeset your homework using LATEX, you will receive 5 percent extra credit.

3. Your solutions will be evaluated on correctness, clarity, and conciseness.

4. Unless otherwise specified, you may use any result we have already proved in class. Clearly state which result
you are using.

5. Solutions to some of the problems may be found in the recommended textbook or other resources. Unless stated
otherwise, you should try the problems on your own instead of searching for answers. If you used any external
references, please cite them in your submission.

6. Collaboration: You may collaborate in groups of size up to 3 on this homework. If you collaborate, please
indicate your collaborators at the beginning of your homework. In any case, you must write the solution in your
own words.
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1 Relationships between divergences

Let P,Q be probabilities with densities p, q respectively. Recall the following divergences we discussed in class

KL divergence: KL(P,Q) =
∫

log
(
p(x)
q(x)

)
p(x)dx.

Total variation distance: TV(P,Q) = supA |P (A)−Q(A)|.

L1 distance: ‖P −Q‖1 =
∫
|p(x)− q(x)|dx.

Hellinger distance: H2(P,Q) =
∫ (√

p(x)−
√
q(x)

)2

dx.

Finally, let ‖P ∧ Q‖ =
∫

min(p(x), q(x))dx denote the affinity between two distributions. When we have n i.i.d
observations, let Pn, Qn denote the product distributions.

Prove the following statements:

1. [3 pts] KL(Pn, Qn) = nKL(P,Q).

2. [3 pts] H2(Pn, Qn) = 2− 2
(
1− 1

2H2(P,Q)
)n

.

3. [3 pts] TV(P,Q) = 1
2‖P −Q‖1.

Hint: Can you relate both sides of the equation to the set A = {x; p(x) > q(x)}?

4. [3 pts] TV(P,Q) = 1− ‖P ∧Q‖.

5. [3 pts] H2(P,Q) ≤ ‖P −Q‖1.
Hint: What can you say about (a− b)2 and |a2 − b2| when a, b > 0?

2 Lower bounds with mixtures

In this question, you will prove a variant of our current framework for proving minimax lower bounds that involve
mixtures of distributions.

1. [5 pts] We observe data S drawn from some distribution P belonging to a family of distributions P . We wish to
estimate a parameter θ(P ) ∈ Θ of interest via a loss Φ ◦ ρ, where Φ : R+ → R+ is a non-decreasing function
and ρ : Θ × Θ → R+ is a metric. Let P1, . . . ,PN be subsets of P , and let Λj denote a prior on Pj . Let P j
denote the mixture,

P j(S ∈ A) = EP∼Λj [ES∼P [1(S ∈ A)]] .

Let δ = minj 6=k infP∈Pj ,P ′∈Pk ρ(θ(P ), θ(P ′)). Let ψ be a function which maps the data to [N ] and θ̂ be an
estimator which maps the data to Θ. Then, prove that

R? = inf
θ̂

sup
P∈P

ES
[
Φ ◦ ρ

(
θ(P ), θ̂(S)

)]
≥ Φ

(
δ

2

)
inf
ψ

max
j∈[N ]

P j(ψ(S) 6= j).

2. [3 pts] Suppose we observe n i.i.d datapoints S = {X1, . . . , Xn} drawn from someP ∈ P . Let {P0, P1, . . . , PN} ⊂
P and let δ = minj∈{1,...,N} ρ(θ(P0), θ(Pj)). Let P = 1

N

∑N
j=1 P

n
j . Show that,

R?n ≥
1

4
Φ

(
δ

2

)
exp

(
−KL(Pn0 , P )

)
(correction: Previously, δ was undefined. Thanks to Guy Zamir for pointing this out. –KK)

3. [2 pts] Using the result from part 2, briefly explain why using mixtures in the alternatives can (i) lead to tighter
lower bounds, but (ii) are difficult to apply.
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3 Lower bounds for estimating a 1-sparse mean

We observe a dataset S ⊂ Rd of n i.i.d points drawn from a distribution P belonging to the class P of d–dimensional
normal distributions whose means are at most 1-sparse. For a vector v ∈ Rd, let |v|0 =

∑d
i=1 1(vi 6= 0) denote the

number of non-zero elements. Then, P is defined as follows:

P =
{
N (µ, σ2I); µ ∈ Rd, |µ|0 ≤ 1

}
We wish to design an estimator θ̂ for the mean θ(P ) = EX∼P [X] to minimize the L2 loss ‖θ̂ − θ‖22.

[6 pts] Show the following lower bound for this problem.

R?n
∆
= inf

θ̂
sup
P∈P1

ES
[ ∥∥θ̂(S)− θ(P )

∥∥2

2

]
∈ Ω

(
σ2 log(d)

n

)
.

You do not need to prove upper bounds for this question. You may assume that d is sufficiently large.

N.B: It is in fact possible to design an estimator that achieves this rate. Recall that for Gaussian mean estimation in k
dimensions, the minimax rate is σ2k/n, whereas for univariate Gaussians, it is σ2/n. The additional log(d/k) factor
for sparse estimation can be viewed as the price for identifying which of the d coordinates are non-zero.

4 Density estimation in a Hölder class

Let H(2, L,B), defined below, denote the bounded second order Hölder class in [0, 1]. It consists of functions whose
derivatives are L-Lipschitz.

H(2, L,B) = {f : [0, 1]→ [0, B]; |f ′(x1)− f ′(x2)| ≤ L|x1 − x2| for all x1, x2 ∈ R}

Let P denote the set of distributions whose densities are in H(2, L,B). We observe n samples S = {X1, . . . , Xn}
drawn i.i.d from some P ∈ P and wish to estimate its density p in the L2 loss Φ ◦ ρ(p1, p2) = ‖p1 − p2‖22. The
minimax risk is

R?n = inf
p̂

sup
p∈H(2,L,B)

ES
[
‖p− p̂‖22

]
.

In this question, you will show that the minimax rate1 for this problem is Θ(n−4/5).

1. [15 pts] (Lower bound) Using Fano’s method, or otherwise, show that R?n ∈ Ω(n−4/5).

2. [15 pts] (Upper bound) Design an estimator p̂ for p and bound its risk by O(n−4/5).

Hint: If you choose to use a kernel density estimator, consider the first order Taylor expansion of p and then
apply the Hölder property.

3. [4 pts] (High dimensional setting) In words, briefly explain how you can extend both the upper and lower bounds
for density estimation in d dimensions. The d dimensional second-order Hölder class, defined below, consists
of functions whose partial derivatives are Lipschitz.

H(2, L,B) =

{
f : [0, 1]d → [0, B];

∂f

∂xi
is L–Lipschitz for all i ∈ [d]

}
.

You can focus only on the key differences. A detailed proof is not necessary.

4. [4 pts] (Lipschitz second derivatives) In words, briefly explain how you can extend both the upper and lower
bounds if the densities belonged to the third order Hölder class in one dimension, defined below:

H(3, L,B) = {f : [0, 1]→ [0, B]; |f ′′(x1)− f ′′(x2)| ≤ L|x1 − x2| for all x1, x2 ∈ R}

1Recall from class that the minimax rate for a Hölder class of order β is O
(
n
− 2β

2β+d

)
in Rd.
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Please focus only on the key differences. A detailed proof is not necessary.

Hint: For the upper bound, if you choose to use a kernel density estimator, you may consider a kernel of the
form K(u) = 1(|u| ≤ 1/2)(α− βu2) for appropriately chosen α, β.
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