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In the first two lectures, we will introduce probably approximately correct (PAC) Learning. First, we
will introduce some background definitions, then discuss empirical risk minimization (ERM), analysis of
ERM under different assumptions in the realizable and non-realizable settings, and finally conclude with a
discussion on agnostic PAC learning. Note we also went over the course overview and logistics, but these
are slides available on the course website.

1 Background Definitions

We begin by laying out some important foundational definitions for discussing data, learning algorithms,
and model evaluation. In these two lectures, we focus on the binary classification setting.

We first introduce the general concepts of the input space X (also known as the covariate, feature, etc.
space) and the label space Y (response, output, target, etc.). In the case of binary classification, we have
Y = {0, 1}. One common example for X is Euclidean space denoted Rd. With a given Input and Label
Space pair, we assume that there exists some joint distribution PX,Y over ordered pairs (X,Y ) ∈ X × Y,
such that each (X,Y ) ∈ (X × Y) in our observed dataset,

S = {(X1, Y1), . . . , (Xn, Yn)}

is sampled independently and identically from. We will refer to identically and independently distributed as
iid.

Next, we define a hypothesis to be any map h : X → Y, a function that takes X ∈ X as input and
outputs a label Y ∈ Y. In the binary classification setting, Y = {0, 1}.

Learning in the statistical / machine learning sense is the act of finding a “good” hypothesis. This
motivates the questions: What constitutes a “good” hypothesis? And how do we compare one hypothesis to
another?

A metric used to evaluate and contrast hypotheses is the notion of risk.

Definition 1. The Risk of a hypothesis h is defined as

R(h) = E(X,Y )∼PX,Y
[ℓ(h(X), Y )],

where ℓ : Y × Y → R+ is a predefined loss function, a function that measures the “difference” or
“distance” between two labels, y1, y2 ∈ Y. All risk functions are defined with respect to a loss function and
distribution, PXY .

In the Binary Classification setting, the hypotheses are functions that propose a “splitting” of the data
into positive and negative (0 and 1) classes, and our goal is to learn a function (or set of functions) that
produce a low probability of misclassification. Misclassfication is defined as

h(x) ̸= y for (x, y) ∈ (X ,Y).
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A natural loss function to consider in the binary classification setting is the 0−1 loss function or the indicator
function defined as

ℓ(h(X), Y ) = I{h(X) ̸=Y }

Hence, the risk associated with the 0 − 1 loss function is simply the probability of misclassication with
respect to PXY or the expected classification error of h expressed as

R(h) = EX,Y∼PX,Y
[I{h(X )̸=Y }] = P(X,Y )∼PX,Y

(h(X) ̸= Y )

.

2 Empirical Risk Minimization

Empirical Risk Minimization (ERM) is a learning algorithm that seeks to select a hypothesis from our
predetermined hypotheses class with the lowest empirical risk.

Definition 2. A hypothesis class H ⊂ {h : X → Y} is the set of “learnable” hypotheses for our problem
setting.

In a perfect world, we want to select a hypothesis that minimizesR(h) over all h ∈ H, however, because the
underlying distribution of the data, PXY is often unknown, R(h) is not calculable and thus not minimizable.
This motivates the notion of Empirical Risk.

Definition 3. The Empirical Risk, R̂ of a hypothesis h ∈ H is defined

R̂(h) =
1

n

n∑
i=1

ℓ(h(Xi), Yi) =

(
1

n

n∑
i=1

I{h(Xi) ̸=Yi} in the case of binary classification

)

Empirical risk treats our observed dataset as the distribution PXY , where each data point has an equal
weight of 1. Rather than the expected loss, we use the observed average loss to evaluate each h ∈ H. Next,
we will state the empirical risk minimization algorithm.

Algorithm

Empirical Risk Minimization is a learning algorithm that selects the ”best” hypothesis ĥ by mini-
mizing empirical risk denoted

ĥ ∈ argmin
h∈H

R̂(h).

Notice that in the above definition, we did not use equality (=), but rather set notion (∈) because ĥ ∈ H
need not be unique as the risk of two (or more) hypotheses in the hypotheses class may be equal.
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Example 1 (Binary Classification ERM). Let X = R2, Y = {0, 1}, H = {h1, h2, h3} (pictured below). We

have R̂(h3) > 0 and R̂(h1) = R̂(h2) = 0. Therefore, ERM yields ĥ ∈ {h1, h2}. However, notice that, given
the full distribution PX,Y , we conclude the following: R(h2), R(h3) > 0 and R(h1) = 0. Thus, h1 is clearly

the “best” hypothesis in H, though we cannot uniquely identify ĥ = h1 with only using this dataset S (and
no information to PXY ).

Figure 1: A simple binary classification example with input space X = R2

3 Analysis of ERM

We start with a simple analysis of ERM with two fairly strong assumptions:

1. We have a finite hypotehsis class, i.e., |H| < ∞.

2. Our problem is realizable, i.e. ∃h∗ ∈ H such that ∀(x, y) ∈ supp(PXY ), we have that y = h∗(x). This
implies that R(h∗) = 0.

supp(PXY ) refers to the support of PXY . The realizability assumption is a strong because we are assuming
that there exists a h in our selected hypothesis class, H, that predicts our data and any future data drawn
from PXY perfectly. This often means there is no noise or stochastic elements in PXY , which is uncommon
in practice. Under the realizability assumption, R̂(h∗) = 0 as h∗(xi) = yi ∀(xi, yi) ∈ S. This means, as ĥ

minimizes R̂(h), we have R̂(ĥ) = 0.
These assumptions greatly simplify our analysis and enable us to develop strong results and guarantees.

We will relax both assumptions later. The first assumption narrows down the scope of the problem and
allows us to use |H| is a constant in our bounds. The realizability assumption guarantees that there exists
some hypothesis in our hypothesis class with 0 risk.

Due to realizability, we have R̂(h∗) = 0. Consequently, our ERM estimator ĥ has zero empirical risk

(R̂(ĥ) = 0), as there is at least one hypothesis (namely h∗) in our hypothesis class with 0 empirical risk;

however, we are not guaranteed R(ĥ) = 0, as we can select ĥ ̸= h∗. We saw this case in Example 1, where
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the problem was realizable by h1(x) = y, but we had ĥ ∈ {h1, h2} under our particular dataset S. Because of
this, we generally aim for statistical results that guarantee, with high probability, R(ĥ) ≤ ε for a sufficiently
small tolerance ε > 0, dependent on our sample size n and hypothesis class H.

Theorem 2. Let ĥ ∈ H be chosen via ERM, using a dataset of n i.i.d. samples under the above assumptions
(|H| < ∞ and realizability). Then, ∀ε > 0, the probability with respect to the dataset S

PS(R(ĥ) ≤ ε) ≥ 1− |H|e−nε

There are a few things that you will notice. As n increases, the guarantee improves. As |H| increases,
the guarantee worsens. This makes sense as the more data we have the better we can do and the more
hypotheses we have to chose from, the harder it is to chose the best.

Proof
Let ε > 0 be given. Let HB := {h ∈ H : R(h) > ε} to be the set of “bad” hypotheses (we call them

“bad” because they have a risk that exceeds our desired tolerance of ε). Consider any h ∈ HB , R(h) > ε
by construction. More concretely, if we choose our loss function to be the standard 0/1 loss in binary
classification problems, by construction we have that, for any h ∈ HB ,

R(h) = E(X,Y )∼PX,Y
[I{h(X )̸=Y }] = P(X,Y )∼PX,Y

(h(X) ̸= Y ) > ε

Therefore, for any h ∈ HB ,

PS(R̂(h) = 0) = PS(h(Xi) = Yi ∀(Xi, Yi) ∈ S) =
n∏

i=1

P(Xi,Yi)∼PX,Y
(h(Xi) = Yi) ≤ (1− ε)n

We continue with the proof above. Observe that the third equality above follows from the fact that the
random vectors (Xi, Yi) are i.i.d. by initial assumption.

By the Realizability assumption, we know that there exists h∗ ∈ H such that R̂(h∗) = 0. Therefore, one

would never pick h ∈ H to be the empirical risk minimizer ĥ if R̂(h) > 0. Hence, we can define the good

event G := {∀ h ∈ HB , R̂(h) > 0} (“good” since under those conditions one would never make a mistake
selecting the empirical risk minimizer by choosing a hypothesis that has large true risk). That is, under G

and Realizability, ĥ /∈ HB . Then

PS(G
c) = PS(∃h ∈ HB : R̂(h) = 0) ≤

∑
h∈HB

PS(R̂(h) = 0) ≤
∑

h∈HB

(1− ε)n ≤ |HB |(1− ε)n

where the second inequality follows from our previous derivation, and the first inequality is a direct applica-
tion of the Union bound1. Observe that the above derivation implies that

PS(G) ≥ 1− |H|(1− ε)n ≥ 1− |H|e−nε

where the last inequality is true by the fact that ∀x ≥ −1, ln(1+x) ≤ x. Since e is a monotonically increasing
function, 1 + x ≤ ex and multiplying the inequality by itself n times, as both sides are non-negative, yields
(1 + x)n ≤ enx. Let x = −ε for the result.

Since under G and Realizability, ĥ /∈ HB and hence R(ĥ) < ε, we have our wanted result:

PS(R(ĥ) ≤ ε) ≥ 1− |H|e−nε

1The union bound states that if A1, . . . , AK are events; then, P(
⋃K

k=1 Ak) ≤
∑K

k=1 P(Ak)
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Observe that there are three parameters that one can control: namely the amount of data n, the desired
risk tolerance ε > 0, and the probability of error δ. Different parameters are controlled in the following two
corollaries.

Corollary 1. Given δ, ε > 0, if n ≥ 1
ε log

(
|H|
δ

)
, we have

P(R(ĥ) < ε) ≥ 1− δ.

Proof As ε > 0, By Theorem 2,
PS(R(ĥ) ≤ ε) ≥ 1− |H|e−nε

Using the inequality for n yields

PS(R(ĥ) ≤ ε) ≥ 1− |H|e−nε

≥ 1− |H|e−
1
ε ln(H

δ )ε

= 1− δ

Corollary 2. Given n, δ > 0, ERM satisfies

P
(
R(ĥ) <

1

n
log

(
|H|
δ

))
≥ 1− δ.

Proof Assume ε > 0. By Theorem 2,

PS(R(ĥ) ≤ ε) ≥ 1− |H|e−nε

. Let δ := |H|e−nε. Then, ε = 1
n ln

(
|H|
δ

)
. Plugging in for δ and ε gives

P
(
R(ĥ) <

1

n
log

(
|H|
δ

))
≥ 1− δ.

4 PAC-Learning

The previous results illustrate the concept of “PAC learning”. PAC is an acronym for “Probably Approx-
imately Correct”, which means that with high probability (“Probably”) the error our learning algorithm
makes is small (i.e. it’s “Approximately Correct”). The standard definition of PAC Learning requires a
more technical characterization based off of 3.1SB.

Definition 4. Let X ,Y be the distribution of the data and label space and let ℓ : Y × Y → R+ be a
loss function. A hypothesis class H ⊆ {h|X → Y} is realizable PAC-Learnable if there exists a function
N : (0, 1)2 → N and a learning algorithm with the following property:

∀ε ∈ (0, 1), δ ∈ (0, 1), and ∀ distributions over X ×Y, if the realizability assumptions holds with respect to
PXY and H, then when running the algorithm on n ≥ N(ε, δ) iid samples from PXY , the algorithm returns

a hypothesis ĥ ∈ H such that with probability at least 1− δ, we have

R(ĥ) = E(X,Y )∼PX,Y
[ℓ(ĥ(x), y)] ≤ ε.
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When H is finite, it is realizable PAC by ERM by Theorem 2. Note that realizability is a strong assump-
tion, which leads to quite good results in terms of error and sample complexity. The error decresses on an
order of 1

n and the sample complexity 1
ε .

Let’s take a look at two settings not covered under the realizability assumption. Clearly, we need

Figure 2: Plot of stochasticlly labeled data not realizable under linear classifiers

Figure 3: Plot of data not realizable under linear classifiers

something more than the realizable setting.

Definition 5. A hypothesis class H ⊆ {h : X → Y} is agnostic PAC-Learnable if there exists a function
N : (0, 1)2 → N and a learning algorithm with the following property:

∀ε ∈ (0, 1), δ ∈ (0, 1), and ∀ distributions over X ×Y, if the realizability assumptions holds with respect to
PXY and H, then when running the algorithm on n ≥ N(ε, δ) iid samples from PXY , the algorithm returns

a hypothesis ĥ ∈ H such that with probability at least 1− δ, we have

R(ĥ) ≤ inf
h′∈H

R(h′) + ε

where R(h) = E(X,Y )∼PX,Y
[ℓ(h(x), y)]

Now, we will analyze ERM in the agnostic case.

Theorem 3. Let H < ∞, and let h∗ = argminh∈H R(h). Let ε > 0 and ĥ be a chosen h ∈ H via ERM
using a dataset of n iid samples. Then,

P(R(ĥ) ≤ R(h∗) + 2ε) ≥ 1− 2|H|e−2nε2 .
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Proof Fix n, ϵ. Let us define G, the set of “good events” as

G = {∀h ∈ H : |R̂(h)−R(h)| ≤ ϵ}.

These are favorable events as it limits how far away the empirical risk can be from the true risk as
visualized in Figure 4. Under the event G,

R(ĥ)−R(h∗) = [R(ĥ)− R̂(ĥ)] + [R̂(ĥ)−R(h∗)],

where
R(ĥ)− R̂(ĥ) ≤ ϵ,

which follows from the definition of “good” event. Note that since ĥ minimizes the empirical risk, we also
have

R̂(ĥ)−R(h∗) ≤ R̂(h∗)−R(h∗) ≤ ϵ.

The second inequality follows directly from the definition of a “good” event. Thus,

R̂(ĥ)−R(h∗) ≤ 2ε

and so
R(ĥ) ≤ R(h∗) + 2ε.

Next, we need to show that

P(Gc) ≤ 2|H|e−2nϵ2 .

By the definition of G and union bound, we have

P(Gc) = P(∃h ∈ H : |R̂(h)−R(h)| > ϵ) ≤
∑
h∈H

P(|R̂(h)−R(h)| > ϵ)

.
Because we have a sum of random variables, it follows to apply Hoeffding’s inequality (seen Lemma 1),

where

Zi = ℓ(h(xi, yi)) ⇒ Sn =

n∑
i=1

ℓ(h(xi, yi)) and E[Sn] = nE[ℓ(h(x), y)],

which yields

n(R̂(h)−R(h)) =

n∑
i=1

ℓ(h(xi), yi)− nE[ℓ(h(x), y)].

Therefore,

P(|R̂(h)−R(h)| > ϵ) = P(n|R̂(h)−R(h)| > nϵ)

≤ 2 exp(
−2n2ϵ2

n
)

= 2e−2nϵ2

Thus,

P(Gc) ≤
∑
h∈H

2e−2ne2 = 2|H|e−2ne2 .

Expressing in terms of P(G),

P(G) ≥ 1− 2|H|e−2ne2
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which is the wanted result,

P(R(ĥ) ≤ R(h∗) + 2ε) ≥ 1− 2|H|e−2nε2 .

Figure 4: An example of hypotheses and their associated real and empirical risks under the conditions of G.

Lemma 1. Hoeffding’s inequality
Let z1, . . . , zn be independent random variables where zi ∈ [a, b]∀i ∈ {1, . . . , n}. Let Sn :=

∑n
i=1 zi. Then

∀ε > 0,

P(Sn − E[Sn] ≥ t) ≤ exp

(
−2t2∑

i(bi − ai)2

)
P(E[Sn]− Sn ≥ t) ≤ exp

(
−2t2∑

i(bi − ai)2

)
We have two corollaries, similar to the realizable case.

Corollary 3. Given ε, δ, if n ≥ 1
2ε2 ln

(
2|H|
δ

)
, then

P(R(ĥ) < R(h∗) + 2ε) ≥ 1− δ

and therefore finite H is agnostic PAC-learnable.

Proof Assume the assumptions and apply Theorem 3. Then,

P(R(ĥ) ≤ R(h∗) + 2ε) ≥ 1− 2|H|e−2nε2 .

Plugging in n ≥ 1
2ε2 ln

(
2|H|
δ

)
gives

P(R(ĥ) < R(h∗) + 2ε) ≥ 1− δ.
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Corollary 4. Given n and δ, ERM satisfies

P

(
R(ĥ) ≤ R(h∗) +

√
2

n
log

(
2|H|
δ

))
≥ 1− δ

Proof Assume the assumptions and by Theorem 3,

P(R(ĥ) ≤ R(h∗) + 2ε) ≥ 1− 2|H|e−2nε2 .

Define δ := 2|H|e−2nε2 . Then, ε =

√
1
2n log

(
2|H|
δ

)
. Plugging in δ and ε gives

P

(
R(ĥ) ≤ R(h∗) + 2

√
1

2n
log

(
2|H|
δ

))
≥ 1− δ

and thus

P

(
R(ĥ) ≤ R(h∗) +

√
2

n
log

(
2|H|
δ

))
≥ 1− δ.

Compared to the realizable case, we have a slower rate of convergence, and then the true risk of the ĥ
found by ERM goes to the true risk of the best classifier, not 0. Below is a table comparing sample and
error complexity in the realizable and agnostic case.

Realizable Agnostic

Sample Complexity O
(
1
ε

)
O
(

1
ε2

)
Error ϵ, δ O

(
1
n

)
O
(

1√
n

)
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