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This lecture will introduce the Bayes optimal classifier. Then, we will introduce approximation
and estimation error. Next, we will introduce McDiarmid’s inequality, a key tool that will be used
to establish the uniform convergence in the probability of the empirical risk to the true risk for any
hypothesis within a given hypothesis class. Finally, we will cover the concept of empirical Rademacher
complexity, which will help us explicitly bound the difference between the empirical risk and the true risk
with high probability.

1 Bayes Optimal Classifier
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Figure 1: An example of Bayes Optimal Classifier

We begin this lecture by introducing the Bayes optimal classifier. This classifier always selects the
class with the highest probability given the input. For binary classification, the classifier is defined as follows:

hB(x) = argmax
y∈{0,1}

P(Y = y | X = x)

=

{
1 if P(Y = 1 | X = x) ≥ 1

2

0 if P(Y = 0 | X = x) > 1
2

We can show that the Bayes optimal classifier produces the minimum risk among all classifiers. Intu-
itively, selecting the class with the highest conditional probability minimizes the expected prediction error.

Theorem: ∀h ∈ h : X → Y , R(h) ≥ R(hB)
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Proof: The risk of any classifier h is given by:

R(h) = EXY [1(h(X) ̸= Y )] (Definition of risk as the expected indicator of misclassification)

= EX [EY |X [1(h(X) ̸= Y ) | X]] (Applying the law of iterated expectation)

= EX [EY [1(h(X) ̸= Y ) | Y = 0, X]P(Y = 0 | X) + EY [1(h(X) ̸= Y ) | Y = 1, X]P(Y = 1 | X)]

(Separate the cases when Y = 0 and Y = 1)

= EX [1(h(X) ̸= 0)P(Y = 0 | X) + 1(h(X) ̸= 1)P(Y = 1 | X)]

= EX [1(h(X) = 1)P(Y = 0 | X) + 1(h(X) = 0)P(Y = 1 | X)]

=

∫
x

(1(h(x) = 1)P(Y = 0 | X = x) + 1(h(x) = 0)P(Y = 1 | X = x)) dPX(x)

The integrand is minimized at each point if h(x) follows this rule: when P (Y = 0|X = x) ≥ P (Y =
1|X = x), we set h(x) = 0, ensuring that the smaller of the two terms in the integrand is selected. Similarly,
if P (Y = 1|X = x) ≥ P (Y = 0|X = x), we set h(x) = 1. In other words, by choosing h(x) in this way,
we minimize the integrand—and consequently, the risk—for every x. Therefore, the risk of h is minimized
when h(x) is chosen as follows:

h(x) =

{
1 if P(Y = 1 | X = x) ≥ P(Y = 0 | X = x)

0 otherwise

This is the same decision rule as the Bayes classifier hB . Therefore, R(h) ≥ R(hB) for all classifiers h,
proving the result.

2 Estimation and Approximation Errors

Suppose an algorithm (such as Empirical Risk Minimization (ERM)) chooses a hypothesis ĥ ∈ H from the

hypothesis class H. Then the excess risk, i.e the difference between the risk of the selected hypothesis ĥ and
the Bayes optimal hypothesis hB can be decomposed as follows:

R(ĥ)−R(hB)︸ ︷︷ ︸
excess risk

= R(ĥ)−R(h∗)︸ ︷︷ ︸
Estimation Error

+ R(h∗)−R(hB)︸ ︷︷ ︸
Approximation Error

Here, h∗ is the best hypothesis within the class H that minimizes the true risk:

h∗ = argmin
h∈H

R(h).

The two terms in this decomposition represent the following:

• Estimation Error: R(ĥ)−R(h∗)

This is the error that results from selecting ĥ based on the empirical data. It represents the difference
between the empirical minimizer ĥ and the best possible hypothesis h∗ in the class H.

• Approximation Error: R(h∗)−R(hB)
This is the error caused by the fact that the best hypothesis h∗ in H may not be as good as the Bayes
optimal classifier hB . The approximation error arises from the limitations of the hypothesis class H.
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Our focus so far, and going forward, is in bounding the estimation error. Controlling the approximation
error typically requires additional assumptions about the problem.

To reduce estimation error, it is necessary to have enough data and choose the best hypothesis based on
that data. We show an example in Figure 2, where we can see that expanding from H to H̃ would reduce
the approximation error, but would also then potentially increase the estimation error by having a larger
class of hypotheses to ”test” on the given data.

{ℎ: 𝑋 → 𝑌}

𝐻 𝐻)

ℎ*

ℎ!

ℎ∗
ℎ∗

Figure 2: A visual representation of the Approximation vs. Estimation error trade-off

3 McDiarmid’s Inequality

Next, we introduce McDiarmid’s inequality, a concentration inequality that provides a bound on the difference
between a function’s value when evaluated on a sample and its expected value. We will apply McDiarmid’s
inequality in the context of Rademacher complexity. To begin, we need to define the bounded difference
property, which is a requirement for applying McDiarmid’s inequality.

Definition 1 (Bounded Difference Property). Let f : Rn → R. The function f satisfies the bounded
difference property if there exist constants c1, . . . , cn ∈ R such that for all k ∈ {1, . . . , n}:

sup
z1,...,zk,...,zn,z̃k

|f(z1, . . . , zk, . . . , zn)− f(z1, . . . , z̃k, . . . , zn)| ≤ ck

Intuitively, the bounded difference property means that changing any one input to the function f results
in a controlled, finite change in the output. Now, we formally state McDiarmid’s inequality.

Theorem 1 (McDiarmid’s Inequality). Let f : Rn → R be a function that satisfies the bounded difference
property with bounds c1, . . . , cn. Let Z1, . . . , Zn be independent random variables. Then for any ϵ > 0, the
following holds:

P(f(Z1, . . . , Zn)− E[f(Z1, . . . , Zn)] ≥ ϵ) ≤ exp

(
−2ϵ2∑n
k=1 c

2
k

)
Similarly,

P(E[f(Z1, . . . , Zn)]− f(Z1, . . . , Zn) ≥ ϵ) ≤ exp

(
−2ϵ2∑n
k=1 c

2
k

)

To see McDiarmid’s inequality in action, consider the following example:
Example 2. We will apply McDiarmid’s inequality to show that:

P(|R̂(h)−R(h)| > ϵ) ≤ 2e−2nϵ2 .

3



First, we will show that R̂(h) satisfies the bounded difference property. Let X1, . . . , Xn ∈ Rd and Y ∈ {0, 1}
be random variables. Define the random variable Zi = 1(h(Xi) ̸= Yi), and recall that:

R̂(h) =
1

n

n∑
i=1

1(h(Xi) ̸= Yi) =
1

n

n∑
i=1

Zi.

Thus, R̂(h) can be written as a function of Z1, . . . , Zn. Let k ∈ {1, . . . , n}. The maximum change in R̂(h)
due to a change in Zk is bounded by 1

n .

sup
Z1,...,Zk,...,Zn,Z̃k

∣∣∣∣∣ 1n
n∑

i=1

Zi −
1

n

(
k−1∑
i=1

Zi + Z̃k +

n∑
i=k+1

Zi

)∣∣∣∣∣ (expand sum and substitute Z̃k for Zk)

= sup
Zk,Z̃k

∣∣∣∣ 1nZk − 1

n
Z̃k

∣∣∣∣ = 1

n
(maximum change is bounded by

1

n
)

Thus, R̂(h) satisfies the bounded difference property, and the maximum difference for any input change
is 1

n . Now, we can apply McDiarmid’s inequality.

P(R̂(h)−R(h) > ϵ) = P
(
R̂(h)− E[R̂(h)] > ϵ

)
(by definition of R(h))

≤ exp

(
−2ϵ2∑n
k=1

(
1
n

)2
)

= exp(−2nϵ2) (apply McDiarmid’s inequality and simplify the sum)

By applying the same reasoning, we can also bound the probability that the true risk R(h) exceeds the

empirical risk R̂(h) by more than ϵ:

P(R(h)− R̂(h) > ϵ) ≤ exp(−2nϵ2) (applying McDiarmid’s inequality similarly for R(h)− R̂(h))

Next, using the union bound, we can combine the two bounds. The union bound states that the prob-
ability of either event occurring (i.e., R̂(h) > R(h) + ϵ or R(h) > R̂(h) + ϵ) is at most the sum of their
probabilities:

P(|R(h)− R̂(h)| > ϵ) = P(R(h)− R̂(h) > ϵ) + P(R̂(h)−R(h) > ϵ)

≤ exp(−2nϵ2) + exp(−2nϵ2) (summing the two bounds)

= 2 exp(−2nϵ2) (final result combining both terms)

Thus, we have the desired result:

P(|R(h)− R̂(h)| > ϵ) ≤ 2 exp(−2nϵ2)

4 Uniform convergence

We aim to show that for any small ε > 0, the following holds:

P(∀h ∈ H, |R̂(h)−R(h)| ≤ ε) ≥ γ

where γ ∈ [0, 1] is a large value (i.e., close to 1).
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In a previous lecture, we analyzed the following probability for an arbitrary h ∈ H:

P(|R̂(h)−R(h)| > ε) ≤ δ

where δ ∈ [0, 1] is a small value (i.e., close to 0), derived using bounds such as Hoeffding’s inequality.
We then applied the union bound and obtained:

P(∃h ∈ H, |R̂(h)−R(h)| > ε) ≤
∑
h∈H

P(|R̂(h)−R(h)| > ε) ≤ |H| · δ

However, the above result becomes meaningless if |H| · δ ≥ 1, which is guaranteed to happen if |H| = ∞,
regardless of how small δ > 0 is. Therefore, we need a bound that is still useful when the hypothesis class
H is potentially infinite.

To address this, we consider the following quantity:

f(S) := sup
h∈H

(R̂S(h)−R(h))

where
S := {(X1, Y1), . . . , (Xn, Yn)}

with Xi ∈ X and Yi ∈ {0, 1}, and R̂S(h) :=
1
n

∑
(Xi,Yi)∈S 1{h(Xi) ̸=Yi}.

Next, to apply McDiarmid’s inequality, define

S̃ := {(X1, Y1), . . . , (X̃k, Ỹk), . . . , (Xn, Yn)}.

Then, we can analyze the difference between f(S) and f(S̃) as follows:

sup
S∪S̃

|f(S)− f(S̃)| = sup
S∪S̃

∣∣∣∣sup
h∈H

(R̂S(h)−R(h))− sup
h∈H

(R̂S̃(h)−R(h))

∣∣∣∣
≤ sup

S∪S̃

sup
h∈H

∣∣∣(R̂S(h)−R(h))− (R̂S̃(h)−R(h))
∣∣∣ (rearranging terms)

= sup
S∪S̃

sup
h∈H

∣∣∣R̂S(h)− R̂S̃(h)
∣∣∣ (canceling out the R(h) terms)

= sup
S∪S̃

sup
h∈H

∣∣∣∣ 1n (1{h(Xk )̸=Yk} − 1{h(X̃k )̸=Ỹk}

)∣∣∣∣
≤ 1

n
(since the indicator function values can differ by at most 1)

Thus, the bounded difference property holds with ck = 1
n for all k, allowing us to apply McDiarmid’s

inequality. Applying it, we get:

PS∼PX,Y
(f(S)− E[f(S)] > ε) = PS∼PX,Y

(
sup
h∈H

(R̂S(h)−R(h))− E[sup
h∈H

(R̂S(h)−R(h))] > ε

)
≤ exp(−2nε2) (applying McDiarmid’s inequality)

The probability above can be interpreted as:

P
(
sup
h∈H

(R̂S(h)−R(h)) > E[sup
h∈H

(R̂S(h)−R(h))] + ε

)
,

which is equivalent to:

P
(
∃h ∈ H, (R̂S(h)−R(h)) > E

[
sup
h∈H

(R̂S(h)−R(h))

]
+ ε

)
.
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Therefore, by McDiarmid’s inequality, we can assert that, for all h ∈ H, with probability at least 1 −
exp(−2nε2), we have:

R̂S(h)−R(h) ≤ E[sup
h∈H

(R̂S(h)−R(h))] + ε.

It would be helpful to quantify or at least bound the term E[suph∈H(R̂S(h)−R(h))], which is generally

not equal to suph∈H E[(R̂S(h)−R(h))] = 0, given the non-linearity of the supremum operator.
Next, we will introduce the Rademacher complexity to help us bound this term.

5 Rademacher Complexity

Definition 2. A Rademacher random variable σ ∈ {−1, 1} is defined such that P(σ = −1) = P(σ = 1) = 1
2 .

Definition 3 (Empirical Rademacher Complexity). Let S := {(x1, y1), . . . , (xn, yn)} be an observed sample
of n points, and let σ := (σ1, . . . , σn) ∈ {−1, 1}n be n independent Rademacher random variables. The
Empirical Rademacher Complexity is defined as:

R̂ad(S,H) := Eσ

[
sup
h∈H

1

n

n∑
i=1

σiℓ(h(xi), yi)

]
,

where ℓ(·) is a loss function, such as ℓ(h(xi), yi) = 1{h(xi )̸=yi} in the case of a classification problem.

The intuition behind this definition is that it measures the capacity of a hypothesis class H to align
with random noise (represented by the Rademacher variables σi). In other words, it quantifies how well the
hypothesis class H can fit random patterns in the data.

For better clarity, let us rewrite the definition as follows: let ℓ̃ := (ℓ(h(x1), y1), . . . , ℓ(h(xn), yn)). Then,
we can express the empirical Rademacher complexity as:

R̂ad(S,H) := Eσ

[
sup
h∈H

1

n
σ · ℓ̃

]
,

where σ · ℓ̃ represents the dot product between the vector of Rademacher random variables σ and the vector
of loss values ℓ̃.

This expression measures how well the hypothesis class H can correlate with the random vector of
Rademacher variables. Intuitively, more complex or flexible hypothesis classes can align more closely with
random noise, leading to a higher Rademacher complexity.

(Note: Recall that the dot product between two vectors a and b is equal to the cosine of the angle between
them, scaled by the product of their norms. When these vectors have zero mean, the cosine of the angle is
equivalent to their correlation coefficient.)

5.1 Example of computing Rademacher Complexity

Consider the sample S = {(x1, y1 = 0), (x2, y2 = 1)}, where x1 < x2. We will examine two hypothesis
classes:

• H1 = {ha(x) = 1{x≥a;a∈R}}

• H2 = {ha(x) = 1{x≥a;a∈R}} ∪ {ha(x) = 1{x≤a;a∈R}}

In this example, we compute the empirical Rademacher complexity for both hypothesis classes by con-
sidering different combinations of Rademacher variables, σ = (σ1, σ2).
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Figure 3: Two example threshold functions, where the hypothesis is either h(x) = 1(x ≥ a) or h(x) = 1(x ≤ a)

5.1.1 For H1:

Let’s consider the Rademacher variables σ1, σ2 ∈ {−1,+1} and the empirical loss ℓ(h(xi), yi) = 1{h(xi )̸=yi}.

We compute R̂ad(S,H1) based on different values of σ.

• σ = (+1,+1):

R̂ad(S,H1) = Eσ

[
sup
h∈H1

1

2
(σ1ℓ(h(x1), y1) + σ2ℓ(h(x2), y2))

]
=

1

2
(ℓ1 + ℓ2) (the supremum depends on the choice of threshold a)

• σ = (−1,+1):

R̂ad(S,H1) =
1

2
(−ℓ1 + ℓ2)

• σ = (+1,−1):

R̂ad(S,H1) =
1

2
(ℓ1 − ℓ2)

• σ = (−1,−1):

R̂ad(S,H1) =
1

2
(−ℓ1 − ℓ2)

ForH1, the overall empirical Rademacher complexity can be computed by averaging these values, yielding

R̂ad(S,H1) =
3
8 .

5.1.2 For H2:

Now, let’s consider the extended hypothesis class H2. The presence of hypotheses of the form ha(x) =
1{x≤a;a∈R} allows for more flexibility, which increases the empirical Rademacher complexity.

• σ = (+1,+1):

R̂ad(S,H2) =
1

2
(ℓ1 + ℓ2) (since H2 provides more flexibility)

• σ = (−1,+1):

R̂ad(S,H2) =
1

2
(−ℓ1 + ℓ2)
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• σ = (+1,−1):

R̂ad(S,H2) =
1

2
(ℓ1 − ℓ2)

• σ = (−1,−1):

R̂ad(S,H2) =
1

2
(−ℓ1 − ℓ2)

For H2, the empirical Rademacher complexity is R̂ad(S,H2) =
1
2 , which is higher than that of H1 due

to the additional flexibility of the hypothesis class.
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