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In this lecture, we first introduce the Rademacher complexity, which can be applied to derive an

upper bound for ES

[
suph∈H(R̂S(h)−R(h))

]
. After that, we will state a bound for PAC learning. Then, we

will take a digression to introduce sub-Gaussian random variables and maximal inequality. Finally,
we will introduce the growth function.

1 Rademacher Complexity

We begin by introducing the formal definition of Rademacher complexity.

Definition 1. Given a hypothesis class H and a sample size n ∈ N, the Rademacher complexity of H is
defined as:

Radn(H) = ES∼Pn
xy

[
R̂ad(S,H)

]
= ES,σ

[
sup
h∈H

1

n

n∑
i=1

σiℓ(h(xi), yi)

]
where σ = (σ1, . . . , σn) is a vector of independent Rademacher random variables, and ℓ(h(xi), yi) is the loss
associated with hypothesis h on the example (xi, yi).

Lemma 1. Given a hypothesis class H and a sample size n ∈ N, the following inequality holds:

ES∼Pn
xy

[
sup
h∈H

(
R̂S(h)−R(h)

)]
≤ 2Radn(H)

where R̂S(h) is the empirical risk over the sample S and R(h) is the true risk of hypothesis h.

Lemma 1 will be useful in deriving the PAC learning bound for ERM (Empirical Risk Minimization),
which we will discuss in the next section. Below, we provide the proof of Lemma 1.
Proof

LHS = ES

[
sup
h∈H

(
R̂S(h)− ES′ [R̂S′(h)]

)]
(where S′ is independent from S and drawn from Pn

xy)

= ES

[
sup
h∈H

ES′

[
R̂S(h)− R̂S′(h)

]]
(by linearity of expectation)

≤ ES,S′

[
sup
h∈H

(
R̂S(h)− R̂S′(h)

)]
(applying subadditivity: supE ≤ E sup)

= ES,S′

[
sup
h∈H

(
1

n

n∑
i=1

ℓ(h(xi), yi)−
1

n

n∑
i=1

ℓ(h(x′
i), y

′
i)

)]
(the definition of R̂S(h) and R̂S′(h))

= ES,S′

[
sup
h∈H

1

n

n∑
i=1

[ℓ(h(xi), yi)− ℓ(h(x′
i), y

′
i)]

]
(writing the difference between empirical risks as a sum)
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= ES,S′,σ

[
sup
h∈H

1

n

n∑
i=1

(σiℓ(h(xi), yi)− σiℓ(h(x
′
i), y

′
i))

]
(∀σ, we have equality in expectation)

= ES,S′,σ

[
sup
h∈H

(
1

n

n∑
i=1

σiℓ(h(xi), yi) +
1

n

n∑
i=1

(−σi)ℓ(h(x
′
i), y

′
i)

)]
(splitting the sum into two parts)

≤ ES,σ

[
sup
h∈H

1

n

n∑
i=1

σiℓ(h(xi), yi)

]
+ ES′,σ

[
sup
h∈H

1

n

n∑
i=1

σiℓ(h(x
′
i), y

′
i)

]
(sup(a+ b) ≤ sup a+ sup b)

= ES,σ

[
sup
h∈H

1

n

n∑
i=1

σiℓ(h(xi), yi)

]
+ ES′,σ

[
sup
h∈H

1

n

n∑
i=1

σiℓ(h(x
′
i), y

′
i)

]
(since σi is symmetric)

= 2Radn(H) (by the definition of Rademacher complexity).

Thus, we have shown that the left-hand side is bounded by 2Radn(H).

1.1 PAC Learning Bound for ERM

Theorem 1. Let H be a hypothesis class with finite Rademacher complexity Radn(H). Let ĥ be the hypothesis
obtained via ERM using an i.i.d dataset of n samples. For any ε > 0, there exist universal constants c1 and
c2 such that with probability at least 1− 2e−2nε2 , we have:

R(ĥ) ≤ inf
h∈H

R(h) + c1Radn(H) + c2ε

You will prove this theorem in the next homework. The following ideas may help prove this.

• In the case where there exists an h∗ ∈ H such that R(h∗) = infh∈H R(h), we can use the following
decomposition:

R(ĥ)−R(h∗) =
(
R(ĥ)− R̂(ĥ)

)
+
(
R̂(ĥ)−R(h∗)

)
≤ R(ĥ)− R̂(ĥ)︸ ︷︷ ︸

T1

+ R̂(h∗)−R(h∗)︸ ︷︷ ︸
T2

Using McDiarmid’s inequality, we can bound both terms T1 and T2. McDiarmid’s inequality gives us

P(∀h ∈ H, R̂(h)−R(h) ≤ ES [sup
h∈H

(R̂(h)−R(h))] + ε) ≤ 2Radn(H)

• If there is no h∗ ∈ H such that R(h∗) = infh∈H R(h), we need to handle this case separately. This part
will not be shown here.

Now we have a PAC bound in terms of the Rademacher complexity, why don’t we stop here?

1. It is difficult to directly bound the Rademacher complexity for a given hypothesis class H. On the
other hand, the VC dimension is easier to bound.

2. The VC dimension also makes it more straightforward to prove lower bounds on the sample complexity.
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2 Sub-Gaussian Random Variables and the Maximal Inequality

Definition 2. A random variable X is said to be a σ-sub-Gaussian random variable (denoted as σ-sub-
Gaussian) if it satisfies the following condition for all λ ∈ R:

E
[
eλ(X−E[X])

]
≤ e

λ2σ2

2 .

Intuitively, a σ-sub-Gaussian random variable has tails that decay at least as fast as the tails of a Gaussian
random variable with mean 0 and variance σ2.

Lemma 2. If X is a σ-sub-Gaussian random variable, then for any constant a, aX is (aσ)-sub-Gaussian.

Proof We start with the expectation for the scaled random variable aX:

E
[
eλ(aX−E[aX])

]
= E

[
eλa(X−E[X])

]
(factoring out the constant a)

= E
[(

eλa(X−E[X])
)]

(same expectation as above)

≤ e
λ2(aσ)2

2 (since X is σ-sub-Gaussian).

This shows that aX is (aσ)-sub-Gaussian.

Lemma 3. If X1 and X2 are independent σ1-sub-Gaussian and σ2-sub-Gaussian random variables, respec-

tively, then X1 +X2 is
(√

σ2
1 + σ2

2

)
-sub-Gaussian.

Lemma 4 (Tail Bound). If X is a σ-sub-Gaussian random variable, then for any ε > 0, the following tail
bounds hold:

P(X − E[X] > ε) ≤ e−
ε2

2σ2 ,

P(X − E[X] < −ε) ≤ e−
ε2

2σ2 ,

and as a consequence,

P(|X − E[X]| > ε) ≤ 2e−
ε2

2σ2 .

Proof We will prove the first inequality P(X − E[X] > ε) ≤ e−
ε2

2σ2 .

Assume without loss of generality that E[X] = 0. Then:

P(X > ε) = P(eλX > eλε) (apply exponential to both sides)

≤
E
[
eλX

]
eλε

(apply Markov’s inequality)

≤ e
λ2σ2

2 −λε (since X is σ-sub-Gaussian).

This bound holds for any λ ∈ R. Choosing λ = ε
σ2 optimizes the bound and yields:

P(X > ε) ≤ e−
ε2

2σ2 .
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Example 2 (Gaussian Random Variables are Sub-Gaussian). Let X ∼ N(µ, σ2). Then X is σ-sub-
Gaussian. This holds because the moment generating function of a Gaussian random variable X ∼ N(µ, σ2)
is exactly:

E[eλ(X−µ)] = e
λ2σ2

2

which satisfies the sub-Gaussian definition.
Example 3 (Bounded Random Variables are Sub-Gaussian). Let X be a bounded random variable with
support supp(X) ⊆ [a, b], where −∞ < a ≤ b < ∞. Then X is

(
b−a
2

)
-sub-Gaussian.

This holds because Hoeffding’s lemma implies that for any bounded random variable, the tail decay is at
least as fast as a Gaussian distribution with variance proportional to the range of the variable.
Properties:

1. Let a ∈ R. If X is σ-sub-Gaussian, then aX is |a|σ-sub-Gaussian.
(This follows directly from the definition of sub-Gaussian random variables, where scaling by a multi-
plies the variance by a2.)

2. If X1 and X2 are independent sub-Gaussian random variables with constants σ1 and σ2, respectively,
then X1 +X2 is

√
σ2
1 + σ2

2-sub-Gaussian.
(This result follows from the property that the sum of independent sub-Gaussian random variables is
also sub-Gaussian, with the variance being the sum of the individual variances.)

3. Let X1, . . . , Xn be independent σ-sub-Gaussian random variables. Then, for any ε > 0, the following
concentration inequality holds:

P

(
1

n

∣∣∣∣∣
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−nε2

2σ2

)
.

(This is a consequence of Hoeffding’s inequality, which provides a bound for the probability that the
sum of independent sub-Gaussian random variables deviates from its expectation.)

2.1 Maximal Inequality for Sub-Gaussian Random Variables

Lemma 5 (Maximal Inequality). Let Z1, . . . , Zn be σ-sub-Gaussian random variables (not necessarily inde-
pendent). Then, the expected maximum of these random variables is bounded as follows:

E
[
max
i∈[n]

Zi

]
≤ σ

√
2 log(n).

Proof We begin by noting that for any t > 0, the following inequality holds:

exp

(
tE
[
max
i∈[n]

Zi

])
≤ E

[
exp

(
tmax
i∈[n]

Zi

)]
.

This inequality is due to Jensen’s inequality, which holds because the exponential function is convex.

Next, we use the fact that the maximum of exponentials is less than or equal to the sum of exponentials:

E
[
exp

(
tmax
i∈[n]

Zi

)]
= E

[
max
i∈[n]

exp(tZi)

]
≤ E

[
n∑

i=1

exp(tZi)

]
.

Since each Zi is σ-sub-Gaussian, we know that:

E [exp(tZi)] ≤ exp

(
t2σ2

2

)
.
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Therefore, summing over n independent random variables gives:

E

[
n∑

i=1

exp(tZi)

]
≤ n exp

(
t2σ2

2

)
.

Thus, we have the following inequality:

exp

(
tE
[
max
i∈[n]

Zi

])
≤ n exp

(
t2σ2

2

)
.

Taking the logarithm of both sides gives:

tE
[
max
i∈[n]

Zi

]
≤ log(n) +

t2σ2

2
.

Dividing both sides by t:

E
[
max
i∈[n]

Zi

]
≤ log(n)

t
+

tσ2

2
.

Finally, we minimize the right-hand side by choosing t =

√
2 log(n)

σ . Substituting this value of t into the
inequality gives:

E
[
max
i∈[n]

Zi

]
≤ σ

√
2 log(n).

This concludes the proof.

3 Growth Function

Definition 3. Let H be a hypothesis space and A = {x1, . . . , xn} ⊆ X be a set of input points from the input
space X. We will define the following quantities.

• H(A) := {(h(x1), . . . , h(xn)) | h ∈ H} is the set of all possible labelings of A induced by the hypothesis
class H.

• Let S = {(x1, y1), . . . , (xn, yn)} ⊆ X × Y be a set of input-output pairs from X × Y . Then:

L(S,H) := {(ℓ(h(x1), y1), . . . , ℓ(h(xn), yn)) | h ∈ H}

is the set of all possible loss values for the hypotheses in H evaluated on the sample S, where ℓ(h(xi), yi)
is the loss incurred by hypothesis h on the example (xi, yi).

Exercise 4. Consider the hypothesis class H = {ha(x) = I(x ≥ a) | a ∈ R}, which consists of all one-sided
threshold classifiers.
Case 1: A = {x1 = −1, x2 = 1}
Case 2: A = {x1 = 0, x2 = 0}

Exercise 5. Now consider L(S,H)
Case 1: S = {(x1 = −1, y1 = 0), (x2 = 1, y2 = 1)}
Case 2: S = {(x1 = 0, y1 = 0), (x2 = 0, y2 = 1)}
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