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In this lecture, we will continue our introduction to VC dimension by defining the growth function,
shattering, and the VC dimension itself. The VC dimension is then used in a bound about Rademacher
complexity.

1 Growth Function

From last lecture, we introduced the definitions

Let A= {z1,...,2,},
H(A) 2 [h(z1),. .., h(z,)]|h € H}
Let S ={(z1,y1),-- s (Tn,yn)} SX XY
L(S,H) = {[t(h(z1),31), - -, (h(@n), ya )|l € H}
The following example was then stated

Example 1.
Let H = {hq(z) = 1y>4|h € H} be all one-sided threshold classifiers. Write out H(A) for:

Al = {.’171 = —1,.1?2 = 1}
A2 :{1'1 :0,5172 :0}

Write out L(S,H) for:

Si={(z1=-1Ly1=0),(z2 =192 =1)}
So ={(x1=0,y91 =0), (22 = 0,2 = 1)}

Note that the x values in S; match those in A;. At the beginning of this lecture, we gave the answers,
which are

H(Ar) = {[1,1],[0,1], [0, 0]}

H(Az) = {[1,1],[0,0]}
L(51,H) = {[1,0], 0,0}, [0, 1]}
L(S2,H) = {[0,1], 1,0}



If you look at the above answers, you will notice that the cardinality of H(A4;) and L(S;, H) are the same.
This is not a coincidence, and is stated below. From now on, £(.S,H) uses the 0 — 1 loss.

Claim 1. For any S = {(z1,y1),. -, (Tn,Yn)}, let Sy = {z1,...,z,}. Then,
[£(S, 1) = [H(Sx)].

While we did not prove this rigorously, we gave a proof sketch. There exists a bijection between L£(S, H)
and H(Sx), which would imply the result. The intuition behind the bijection is that each element in H(A)
will compare differently with the y’s, and so will map to a unique element in £(S,H). Now, we define the
growth function.

Definition 1. Let n € N and H C {h : X — Y} be a hypothesis class. Then, the growth function is

g(n,H) = Ag?ﬁ:n'%(“l)' = Sgglgfs‘:nlﬁ(&%)h

To interpret this definition, the growth function is equal to the maximum number of label vectors that
can be realized on a set of n points in X', or loss vectors with a dataset of n points in X' x ), via hypothesis in
X. Note that g(n, H) < 2™ as we are using 0— 1 loss. Below is an example of the growth function calculation.

Example 2. Consider as our hypothesis class two-sided threshold classifiers, that is

H = {ha(®) = Liz>q3]a € R} U {ha(2) = 1fz<qy]a € R}

From Example 1, we have that g(1,H) = 2 for the one-sided classifiers. As we are dealing with two-sided
classifiers, a superset of the one-sided, the growth function of the two-sided must be at least the growth
function of the one-sided. But the growth function for the one-sided is the maximum, so we have that
9(1,H) =

g(2,H) = 4 = 22 as for w1 # 1o, we have

H({z1,22}) = {[0,0],[0,1], [1, 1], [1,0]}.
g(3,H) = 6 < 22 as for 1 # x9 # x3, we have

H({x1, 22, 23}) = {[1,1,1],[1,1,0],]1,0,0],]0,0,0],]0,0,1],[0,1,1]}

Loosely speaking, g(n, H) = 2™ as long as n < degrees of freedom of H, which can be observed in the two
examples above. For one-sided classifiers, we only have one degree of freedom, the choice of a. For two-sided
classifiers, we have two degrees of freedom, the choice of a and the direction of the inequality. Recall that
our purpose for studying the VC dimension is to bound the Rademacher complexity via the growth function.
First however, we must bound the empirical Rademacher complexity.

Lemma 1 (Massart’s Lemma). Let S = {(21,91), -, (@n,yn)} € X x Y, and H be a hypothesis class. Then,

Rad(S,H) < w.

Proof
The idea of this proof is to use the maximal inequality we showed last class, so expanding the LHS

Rad(S H) [sup Zm Yi ]

heH T

= — EO’
vEL(S,H) Pl

n
max g;U;



In the second equality, instead of looking for a supremum over H, we can look at the max over the set
of possible realizations of the loss function for this H with dataset S. Now we have some random variables,
Z, = y.I_, ov;, that we want to use the maximal inequality for. Note that we must show that they are
sub-Gaussian in order to use the result. Noting that o;v; € [—1,1] so then o;v; is 1-sub-Gaussian. As
{O'ﬂ}i}ie[n] are independent, we have their sum 2?21 o;v; is y/n-sub-Gaussian. Therefore, by the maximal
inequality

Eo

Vi| < 2log(|L(S, H
Uerél(asrfmi_lav] Viny/21og(|£(S, H)|)

So,

Rad(S,4) < +iny/2loa(|£(5. 7))

21og(|£(S, H)[)

n

We can use this result to bound the Rademacher complexity.

Corollary 1. Rad,(H) < w

Proof By the definition of the growth function, £(S,H) < g(n,H),VS such that |S| = n. Also, as
Rad,(H) = Es~py,,[Rad(S, H)], we are done by applying expectation at both sides of the inequality. [

From our previous theorem, with probability 1 — § we have

R(h) — jof R(h) < CiRady(H) + O < %bg (2))

< Ciyf 7210(%(975”’%)) +0 ( %log (;))

We want the LHS of Equation 1 to go to zero, i.e., the ERM h to be very close to the best hypothesis as
n — oo. We also know that g(n, H) < 2", so at the very least, g(n,H) € o(2"), but ideally, we would want
something like g(n, H) € O(1). We can (and will) show that for finite VC classes, g(n, H) € O(poly(n))

2 Shattering and VC dimension

Now we introduce the definitions of shattering and VC dimension, which will help us with PAC bounds.

Definition 2. Let A = {z1,...,2,} C X be a set of n points in X. We say that A is shattered by a
hypothesis class H if H can realize any label on A. That is, |H(A)| = 2"

Since we are working with binary classification, a hypothesis class H shattering a set A means that an
hypotheses from # are expressive enough so that they can give all possible labels (0 or 1) to each z; € A. A
couple examples:

Example 3. Let A = {x1,25}. First, let us consider the hypothesis class of one-sided threshold classifiers,
that is, H1 = {he(z) = 1{z>q)|Va € R}. Without loss of generality, let ;1 < xo. We can propose different
values of a to get the following labels:



o If a < x4y, we get labels [1,1].
o If 11 < a < g, we get labels [0, 1].
o If a > z9, we get labels [0, 0]

Note that we cannot realize [1,0] using hypotheses in 1, so it cannot shatter A.
Now, consider the hypothesis class of two-sided threshold classifiers, that is,
Ho = {ha(ac) = 1{$ZQ}|VCL € R} U {ha(x) = IL{KG}Wa € R}
Note that H; C Ha, so Ha can realize all the labels realized by H;. Now, to get the label [1, 0], consider

ha(x) = 1iz<qy With 21 < a < x5. So we can realize every possible pair of labels, meaning that Hs shatters A.

Example 4. Now, let A = {z1,z2,235}. Let uss see if we can shatter A with H,. Without loss of generality,
let 1 < 29 < x3. Consider all possible values of a and both types of hypotheses to see what labels we can
get

e First, consider hypotheses of the type hy(z) = 1;>4):

— If a < 21, we get label [1,1,1]
0,1,1].
0,0,1]

— If 1 < a <z, we get |
— If 2o < a < x3, we get |
— If a > x5 we get [0,0,0]

e Now consider hypotheses of type hy(z) = L{z<a):

— If a < 21, we get label [0, 0, 0]

[
— If 21 < a < x9, we get [1,0,0].
[
]

— If 29 < a < 23, we get [1,1,0]

—Ifa> x5 weget[1,1,1

Note that there are some repeated labels, and we can not get the full 23 = 8 possibilities for labels, since
labels [0,1,0] and [1,0, 1] are not realized. Therefore, we get that Ha(A) = 6 < 23 so A cannot be shattered
by 7‘[2

Now we are ready to introduce the definition of the Vapnik—Chervonenkis dimension.

Definition 3. The VC dimension of an hypothesis class H, called dyy, is the size of the largest set shattered
by H.

In a nutshell, if a hypothesis class has higher VC dimension, it means it is more expressive since it can
shatter bigger sets (or for our interests, datasets).

Example 5. Let us recall Ho, the set of two-sided threshold classifiers. From Example 3, we know that this
hypothesis class can shatter two points, so dy > 2. But from Example 4, we know it cannot shatter sets of
three points, so the VC dimension of this hypothesis class is dyy = 2

Example 6. Consider 2D linear classifiers. The linear classifiers can shatter 3 points. For an illustration of
this, see Figure 1. But can it shatter a set A = {x1, 29, x3, x4} of 4 points? Different possible configurations
of unattainable labels by 2D linear classifiers are given in Figure 2

So the hypothesis class of linear classifiers in 2D can not shatter a set of 4 points, but it can shatter 3
points, so dy = 3



Figure 1: Different possible configurations of labels on three points, and corresponding linear classifier who can
realize that configuration of labels

Figure 2: Different configurations of 4 points in 2D space. Red dots correspond to label 1, blue dots correspond to
label 0.

3 Sauer’s Lemma and a PAC Bound

Now we present a result that does the heavy lifting when we bound VC dimensions.

Theorem 7. If the VC dimension of an hypothesis class is d, then

d
gl ") <Y (?)

=0

The proof will be presented next class. This result means that

=2" ifn<d
<3P, itn>d

%

g(an) = {

because () = 0 if n < i. Note that the term on the bottom is of order O(n?). Let us bound then the
term Z?:o () to get a better sense of how fast does it grow.



That is, when n > d, the growth function grows polynomially on n. We can combine this result with
Equation 1 to get a PAC bound in terms of VC dimension, instead of the growth function.

Theorem 8 (PAC bound for finite VC dimension). Let H be a hypothesis class with finite VC dimension d.

Let h be olgtamed via ERM using n i.i.d. samples, where n > d. Let € > 0. Then, with probability at least
1 —2e72"" | we have

) dlog (2
Ry — it By <0 [ /280 ) o

heH n

This is exactly what we have been working towards the last few lectures! We have bounded the estimation
error of our ERM procedure using VC dimensions.

Once we prove Sauer’s Lemma, we are done with PAC learning. But we will revisit VC dimension when
we prove lower bounds involving risks.

Our work these lectures has been focused on binary classification. The ideas here can be extended in
some directions, like multi-class classification (Mohri et al., 2012, Chapter 9) or regression (Mohri et al.,
2012, Chapter 11). There are technical details to be considered when extending the ideas presented in the
last few lectures to those scenarios, but the core ideas stay the same.
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