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In this lecture, we will first prove Sauer’s Lemma. We will then start studying statistical lower bounds
for point estimation by introducing its general framework.

1 Proof of Sauer’s Lemma

Recall the growth function g(n,H) = max|A|=n |H(A)|, and the Sauer’s lemma

Lemma 1 (Sauer’s Lemma). Define Φd(n) :=
∑d

i=0

(
n
i

)
. If the VC-dimension of a hypothesis class H is d,

then
g(n,H) ≤ Φd(n)

We will now provide a proof for Sauer’s lemma.

The setup for our proof of Sauer’s lemma will be via induction on k = n + d; where n is the number of
i.i.d samples and d is the VC-dimension of our hypothesis class.

1. Base case: Show Sauer’s lemma to be true for

(a) n = 0 and ∀d
(b) d = 0 and ∀n

2. Inductive case: Assume Sauer’s lemma holds for all n+ d ≤ k − 1. Show Sauer’s lemma to be true for
∀n, d such that n+ d = k. See Figure 1 for a visual demo of the induction strategy.

Step 1: Base Case

(a) let n = 0, and consider some H with VC dimension d. Note that g(0,H) = 1 as we can label 0 points
only one way. (Specifically speaking, if A = {},H(A) = {[ ];h ∈ H} = {[ ]} and thus, |H({})| = 1.)

Φd(n) =

d∑
i=0

(
n

i

)
=

d∑
i=0

(
0

i

)
=

(
0

0

)
+

d∑
i=1

(
0

i

)
= 1 + 0 = 1 = g(0,H)

Therefore, Sauer’s lemma is satisfied for n = 0.

(b) Let H be a hypothesis class with VC dimension d = 0. The hypothesis class cannot shatter a set of
size 1 and all classifiers in H must generate the same label.
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Figure 1: Visual demo of the proof by induction. The axes are n and d. The gray region represents the base case
for n and d (where n = 0 and d = 0). The brownish region represents the induction hypothesis (where n + d ≤ k).
The purple region represents the inductive step (where n+ d = k).

Then, for any dataset A ⊆ X , you can label them exactly one way, i.e. g(n,H) = 1.

Φd(n) =

0∑
i=0

(
n

i

)
=

(
n

0

)
= 1 = g(n,H)

The lemma is satisfied for d = 0.

Step 2: Inductive Case

Assume that Sauer’s lemma holds true for all d, n such that d+ n ≤ k − 1. Let d, n be such that d+ n = k.

Given the VC dimension d, consider any A = {x1, . . . , xn}, i.e. A ⊆ X such that |A| = n. Let
G ⊆ {g : A → y} be a class of functions, defined only over A as follows: for each element in H(A), add
one element from H to G. In more detail, for each label {y1, ..., yn} ∈ H(A), there exists h ∈ H such that
{y1, ..., yn} = {h(x1), ..., h(xn)} and we add one such h to G. Therefore, G will have exactly one function
that generates each labeling in H(SX). It follows that

|G| = |G(A)| = |H(A)|

Next, we will partition G into the sets G1 and G2 as follows:

1. G1: For every possible labeling of {x1, ..., xn−1}, add one function from G to G1.

2. G2: Let G2 = G \ G1.

Remarks: There could be 2 hypothesis in G which achieve the same labeling of {x1, . . . ,n−1 }. Furthermore,
∀g2 ∈ G2, there exists g1 ∈ G1 such that g1(xi) = g2(xi) for i ∈ {1, . . . , n− 1} and g1(xn) ̸= g2(xn).

By our construction, H(A) = G(A) = G1(A) ∪ G2(A). Hence,

|H(A)| = |G(A)| = |G1(A)|+ |G2(A)| (1)
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We also have
dG1 ≤︸︷︷︸

G1⊆G

dG ≤︸︷︷︸
G⊆H

dH = d (2)

Claim 1. |G1(A)| = |G1({x1, ..., xn−1})|
Proof For every labeling {g(x1), ..., g(xn−1)} of {x1, . . . , xn−1} in G1({x1, ..., xn−1}), we have exactly one
of either {g(x1), ..., g(xn−1), 0} or {g(x1), ..., g(xn−1), 1} in G1(A).

Claim 2. |G2(A)| = |G2({x1, ..., xn−1})|
Proof Via identical argument.

Now, we will apply the inductive hypothesis.

First, note that (2) indicates that dG1
+ n − 1 ≤ d + n − 1 − 1, so we could apply the assumption on

(dG1 , n− 1). By Claim (1), we have

|G1(A)| = |G1({x1, ..., xn−1})|
≤ g(n− 1,G1)

≤ ΦdG1
(n− 1)

≤ Φd(n− 1)

Definition of growth function

Inductive Hypothesis

Φd increases with d

Next, note that for every g2 ∈ G2,∃g1 ∈ G1 ⊆ G which disagrees g2 only on xn. Therefore, if T ⊆
{x1, ..., xn−1} is shattered by G2, T ∪{xn} must be shattered by G. Because |T ∪{xn}| ≤ dG , |T | ≤ dG − 1 ≤
dH − 1 = d− 1. Hence, dG2

≤ d− 1. Therefore, by Claim (2),

|G2(A)| = |G2({x1, ..., xn−1})|
≤ g(n− 1,G2)

≤ ΦdG2
(n− 1)

≤ Φd−1(n− 1)

Definition of growth function

Inductive Hypothesis

Φd increases with d

Combining the above results, we have

|H(A)| = |G1(A)|+ |G2(A)|
≤ Φd(n− 1) + Φd−1(n− 1)

=

d∑
i=0

(
n− 1

i

)
+

d−1∑
i=0

(
n− 1

i

)

=

(
n− 1

0

)
+

d∑
i=1

(
n− 1

i

)
+

d∑
i=1

(
n− 1

i− 1

)

=

(
n

0

)
+

d∑
i=1

((
n− 1

i

)
+

(
n− 1

i− 1

))
· · · using

(
n

i

)
=

(
n− 1

i

)
+

(
n− 1

i− 1

)

=

(
n

0

)
+

d∑
i=1

(
n

i

)

=

d∑
i=0

(
n

i

)
= Φd(n)
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A ⊆ X is arbitrary, so g(n,H) = max|A|=n |H(A)| ≤ Φd(n). Therefore, Sauer’s lemma holds true in the
inductive case.

2 Statistical Lower Bound

Statistical lower bound is motivated by the following questions: How hard is a learning/estimation problem?
Is our learning optimal? While we will utilize lower bound for regression, classification, density estimation,
online leaning, bandit, etc, we will start with point estimation.

2.1 Point Estimation

We are interested in estimating a single parameter of a distribution (e.g mean of the distribution) using data
drawn from that distribution.

A point estimation problem consists of the following components:

1. A family of distributions P.

2. A data set S = {x1, . . . , xn} drawn i.i.d for a distribution P ∈ P.

3. A parameter of interest θ = θ(P ) ∈ R.

4. An estimator for the parameter based on the drawn data set S: θ̂ = θ̂(S) ∈ R.

5. A loss function ℓ : R× R 7→ R.

6. Risk R(P, θ̂) = ES∼P

[
ℓ(θ(P ), θ̂(S))

]
.

Example 1 (Normal Mean Estimation).

1. Distribution family P = {N(µ, σ2) : µ ∈ R}, where σ2 is known.

2. Data S = {x1, x2, . . . , xn} i.i.d from P , P ∈ P.

3. Parameter θ = θ(P ) = EX∼P [X], P ∈ P

4. Loss function: ℓ(θ1, θ2) = (θ1 − θ2)
2

5. Risk: R(P, θ̂) = ES∼P

[
(θ(P )− θ̂(S))2

]
In HW0, we saw two possible estimators:

θ̂1(S) =
1

n

n∑
i=1

xi

R(θ, θ̂1) = ES∼P

[
(θ − θ̂1(S))

2
]
=

σ2

n

and

θ̂2(S) =
α

n

n∑
i=1

xi, α ∈ [0, 1)

R(θ, θ̂2) = ES∼P

[
(θ − θ̂2(S))

2
]
= θ2(1− α)2 +

α2σ2

n

(In both cases, when we take the expectation, θ is fixed, and θ̂ is the random variable since θ̂ = θ̂(S), and
the expectation is w.r.t data S)
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Notice that R(θ̂1, θ) > R(θ̂2, θ) for small θ, while R(θ̂2, θ) > R(θ̂1, θ) for large θ, which brings difficulty

to find a optimal estimator θ̂ that estimate well for an arbitrary parameter θ.

Extending this example, we see that the estimator θ̂ = µ for µ ∈ R will achieve 0 risk when θ = µ
but will perform poorly elsewhere. This illustrates that we cannot find a uniformly good estimator θ̂ which
minimizes R(θ, θ) for all θ (i.e. ∀θ,R(θ, θ̂) ≤ R(θ, θ̂′) for any estimator θ̂′).

Hence, it is customary to resort to other versions of optimality. The following to notions are common in
the literature:

1. Minimax Optimality. θ̂ minimizes the maximum risk over the class of distribution P, (i.e θ̂ minimizes

supP∈P R(θ(P ), θ̂)).

2. Average Risk Optimality. Average (Bayesian) Risk optimality.
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