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In this lecture, we first study average (Bayesian) risk optimality and then turn to minimax optimality.
We provide recipes and examples for finding these two risks.

1 Average (Bayesian) Risk Optimality

For Average risk, we will introduce Λ over probability space of θ and define,

R̂n(θ) = EP∼Λ[R(P, θ̂)|P ]

= EP∼Λ[ℓ(θ(P ), θ̂(S))|P ]

In the Baysian Paradym, Λ is socalled the prior. And we view θ(P ) as a random variable P which is

sampled from Λ. An estimator θ̂n which minimizes R̂n, is so called Bayes optimal estimator, if it exists. The
minimum value is called the Bayes risk.

R̄Λ(θ̂) = ES [EP (ℓ(θ), θ̂(S))|S]

If you find θ̂ minimizes R̄Λ(θ̂) for all S, then θ̂ is the Bayes estimator. ES is a conditional expectaction
defined over P (S ∈ A) =

∫
Pp(S ∈ A)dΛ(P ) large P is the probability measure, and P is the random variable

defined as above.

Proof
Let θ̂(S) = E(θ(P )|S) then, consider any other estimator θ̂′

Ep([θ̂
′(S)− θ(P )]2|S) = Ep[(θ̂

′ − θ)2|S]

= Ep[(θ̂
′ − θ)2 + (θ̂ − θ)2 + 2(θ̂′ − θ̂)(θ̂ − θ)|S]

= Ep((θ̂
′ − θ̂)2|S)︸ ︷︷ ︸
≥0

+EP [(θ̂ − θ)2|S] + 2E[(θ̂′ − θ̂)(θ̂ − θ)|S]︸ ︷︷ ︸
2(θ̂′ − θ̂)E((θ̂ − θ)|S)︸ ︷︷ ︸

=0 since E(θ|S)=θ̂

≥ Ep[(θ̂ − θ)2|S] = R̄Λ(θ̂)

Example 1. Normal mean estimation: Now suppose Xi|θ
iid∼ N(θ, σ2) and goal parameter θ ∼ Λ

d
= N(µ, τ2)

with σ2, µ, and τ2 known. Due to normal-normal conjugate, we have that µ|S ∼ N(ν̃, τ̃2), where ν̃ =
σ2

n

τ2+σ2

n

ν +
σ2

n

τ2+σ2

n

( 1n
∑n

i=1 Xi), τ̃ = ( 1
τ2 + n

σ2 )
−1.Therefore, the Bayes estimator for normal mean is µ̂(S) =

Ep[µ|S] = ν̃ which is the posterior mean
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Then, calculate Bayes’ risk

R̄Λ(µ̂n) = EP [ES (µ̂− µ)
2 |S]

= ES [EP (µ̂− µ)
2 |S]︸ ︷︷ ︸

Posterior Variance

= Es[τ̃
2]

= τ̃2

In most case, Bayes risk is equal to the expectation of posterior variance. But in this case, posterior
distribution is already known in the assumption. That is Xi ∼ N(µ, τ2 + σ2). It does not depend on data.
Thus the Bayes risk equals to the posterior variance.

Example 2. Again, let our data be given by S = {Xi}. i = [1, 2..., n] Now suppose Xi|θ
iid∼ Bernoulli(θ) and

θ ∼ Λ
d
= Beta(a, b) with a, b known. By Bernoulli-Beta conjugacy, the posterior distirbution is given by

θ|S ∼ Beta

(
n∑

i=1

Xi + a, b+ n−
n∑

i=1

Xi

)
By Lemma 1, The optimal Bayes risk is just the posterior variance.

(R̂n|θ̂n) = E
θ∼Beta(a,b)

[
E∑n

i=1 Xi|θ∼Binomial(n,θ)

(∑n
i=1 Xi + a

n+ a+ b
− θ

)2
]

=
1

(n+ a+ b)2
E

θ∼Beta(a,b)

[
θ2((a+ b)2 − n) + θ(n− 2a(a+ b)) + a2

]
2 Minimax Optimality

We wish to find an estimator which minimizes the maximum risk supP∈P R(P, θ̂).

Definition 1. The minimax risk R∗ of a point estimation problem is defined as follows,

R∗ = inf
θ̂

sup
P∈P

R(P, θ̂) = inf
θ̂

sup
P∈P

ES∼P

[
ℓ(θ(P ), θ̂(S))

]
An estimator θ̂∗ which achieves the minimax risk, i.e. supP∈P R(P, θ̂∗) = R∗ is said to be a minimax-
optimal estimator.

How do you compute the minimax risk? Classically, this was done via a concept called the ”least favorable
prior”, which involves finding a Bayes’ estimator with constant frequentist risk. In this class, we will instead
use the following recipe:

1. Design a ”good estimator” θ̂, and upper bound its risk by Un, i.e.

R∗ ≤ sup
P∈P

R(P, θ̂) ≤ Un.

2. Design a prior Λ with supp(Λ) ⊆ P and lower bound the Bayes’ risk by Ln. This is a lower bound for

R∗, because for any estimator θ̂,

sup
P∈P

R(P, θ̂) ≥︸︷︷︸
max≤average

EP∼Λ

[
R(P, θ̂)

]
≥︸︷︷︸

Bayes’ estimator

EP∼Λ

[
R(P, θ̂Λ)

]
≥ Ln.

where θ̂Λ is the Bayes’ estimator. By taking the infimum over all estimators, we haveR∗ = inf θ̂ supP∈P R(P, θ̂) ≥
Ln.
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3. If Un = Ln, then Ln is the minimax risk and θ̂ is minimax-optimal.

4. If Un ∈ O(Ln), then Ln is the minimax rate and θ̂ is rate-optimal (sometimes simply minimax
optimal).

Example 3. (Normal Mean Estimation) Let S = {X1, .., Xn} drawn i.i.d. from N (µ, σ2), P =
{N (µ, σ2);µ ∈ R}, we will show that µ̂(S) = 1

n

∑n
i=1 Xi is minimax-optimal estimator of µ.

First, we find the upper bound

sup
P∈P

R(P, µ̂)= sup
µ∈R

ES∼N (µ,σ2)

[
(µ− µ̂(S))2

]
= sup

µ∈R

σ2

n
=

σ2

n
=⇒ R∗ ≤ σ2

n
.

Then we find the lower bound via Bayes’ risk. Consider the Bayes’ risk under the prior Λ = N (0, τ2). From
the previous example,

Ln = τ̃2 =

(
1

τ2
+

1

σ2/n

)−1

Therefore, by our recipe, R∗ ≥
(

1
τ2 + 1

σ2/n

)−1

. Since it holds true for all τ , we get R∗ ≥ σ2

n by taking the
supremum over τ .

Combining two bounds together, we can conclude that µ̂(S) is minimax-optimal and σ2

n is the minimax risk.

Example 4. S = {X1, .., Xn} drawn i.i.d. from P ∈ P. P ={ all distribution with variance at most σ2}.
We will show that µ̂(S) = 1

n

∑n
i=1 Xi is minimax-optimal estimator of E[X].

For the upper bound,

sup
P∈P

R(P, µ̂(S)) = sup
P∈P

ES∼P

[
(µ̂(S)− E[X])2

]
= sup

P∈P

Var(X)

n
=

σ2

n
=⇒ R∗ ≤ σ2

n
.

The lower bound can be found by choosing a sub-class P ′
= {N (µ, σ2);µ ∈ R},

R∗ = inf
θ̂

sup
P∈P

R(P, θ̂) ≥ inf
θ̂

sup
P∈P′

R(P, θ̂) =
σ2

n
.

Combining two bounds together, we know that σ2

n is the minimax risk and µ̂ is minimax-optimal.

Example 5. (Bernoulli Mean Estimation) Let P = {Bernoulli(µ);µ ∈ [0, 1]}. Let S = {X1, .., Xn}
drawn i.i.d. from p ∈ P. Let us consider the sample mean µ̂(S) = 1

n

∑n
i=1 Xi.

First, the upper bound is found as follows,

Un = sup
P∈P

R(P, µ̂) = sup
µ∈[0,1]

ES∼Bern(µ)[(µ− µ̂(S))2] = sup
µ∈[0,1]

µ(1− µ)

n
=

1

4n

To find the lower bound, we use Λ = Beta(a, b) as the prior, then we have the following Bayes’ risk,

Ln =
1

(n+ a+ b)2
{(

(a+ b)2 − n
)
Eµ

[
µ2
]
+ (n− 2a(a+ b))Eµ [µ] + a2

}
.

By choosing a = b =
√
n
2 , we get

Ln =
1

4(
√
n+ 1)2

=
1

4n+ 8
√
n+ 4

We have Un > Ln, but Un, Ln ∈ O( 1n ) =⇒ µ̂ is rate-optimal and 1
n is the minimax-rate.

As a side note, it can be shown that

θ̂∗ =

√
n

1 +
√
n

(
1

n

n∑
i=1

Xi

)
+

1

2

(
1

1 +
√
n

)
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is minimax-optimal and 1
4(

√
n+1)2

is the minimax risk.
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