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In this lecture, we begin by recapping the minimax lower bounds for point estimation from the previous
class. Then we will introduce the minimax theory in the general estimation problem and the concept of
hypothesis testing, along with the theorem of the reduction from estimation to testing. Finally, we will
briefly discuss different distances and divergences between distributions.

1 Minimax Theory

We now extend the point estimation to general estimation problems. An estimation problem has the following
components:

1. A known family of distributions P

2. A dataset S of n i.i.d points drawn from the unknown distribution P ∈ P

3. A function(parameter) θ : P → Θ. We wish to estimate θ(P ) from S, e.g. the population meanθ(P ) =
EX∼P [X] and θ(P ) = the density of P .

4. An estimator θ̂ = θ̂(S) ∈ Θ

5. A loss function ℓ, ℓ = Φ ◦ ρ, satisfies the following conditions:

• Φ : R+ → R+ is non-decreasing.

• ρ : Θ×Θ → R+ is a pseudo-metric. That is, it satisfies the following properties for all θ1, θ2, θ3 ∈ Θ,

(i) ρ(θ1, θ1) = 0,

(ii) ρ(θ1, θ2) = ρ(θ2, θ1),

(iii) ρ(θ1, θ2) ≤ ρ(θ1, θ3) + ρ(θ3, θ2).

When we estimate θ(P ) with θ̂, the loss is ℓ(θ(P ), θ̂) = Φ(ρ(θ(P ), θ̂)).

6. The risk of an estimator θ̂ is,

R(P, θ̂) = ES∼Pn

[
Φ ◦ ρ(θ(P ), θ̂(S))

]
= ES∼Pn

[
Φ ◦ ρ(θ, θ̂)

]
.

Note that, as before we have overloaded notation so that θ denotes the parameter θ ∈ Θ and the function
θ : P → Θ. Similarly, θ̂ denotes the estimate θ̂ ∈ Θ and the estimator, which maps the data to Θ.

Definition 1. We can now define the minimax risk R∗ as follows,

R∗ = inf
θ̂

sup
P∈P

ESR(P, θ̂) = inf
θ̂

sup
P∈P

ES

[
Φ ◦ ρ

(
θ(P ), θ̂(S)

)]
.
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Example 1. Normal mean estimation Let S = {X1, .., Xn} drawn i.i.d. from N(µ, σ2), where σ2 is known.
Here, P = {N(µ, σ2);µ ∈ R}. We wish to estimate θ(P ) = EX∼P [X], so Θ = R. If we use the squared loss
ℓ(θ1, θ2) = (θ1 − θ2)

2, then ρ = |θ1 − θ2| and Φ(t) = t2.

Example 2. (Regression) Here, P is the set of all distributions with support on X ×R, where X is the input
space. = The parameter space Θ = {h : X → R}, is the class of functions mapping X to R. We wish to
estimate the regression function, which is given by

θ(P )(·) = E[Y |X = ·]

If we use the L2 loss, ℓ(θ1, θ2) =
∫
X (θ1(x)− θ2(x))

2
dx, then, we have

ρ(θ1, θ2) =

√∫
X
(θ1(x)− θ2(x))

2
dx

∆
= ∥θ1 − θ2∥2, and Φ(t) = t2.

2 From Estimation to Testing

A standard first step in proving minimax bounds is to “reduce” the estimation problem to a testing problem.
Then, we need to show that the estimation risk can be lower bounded by the probability of error in testing
problems, which we can develop tools for. We first define the hypothesis test problems we will use.

Definition 2 (Hypothesis Test). Let Q be a class of distributions, and let Q1,Q2, ..,QN be a partition of
Q. Let S be a dataset drawn from some distribution P ∈ Q. A (multiple) hypothesis test Ψ is a function of
the data which maps to {1, ..., N} ≜ [N ]. If Ψ(S) = j, the test has decided that P ∈ Qj.

In this class, we will focus on cases where Q = {P1, ..., PN}, Qi = {Pj}. PS∼Pj
(Ψ(S) ̸= j) is the

probability of error (when S ∼ Pi).
With this setup, we obtain the classical reduction from estimation to testing.

Theorem 3 (Reduction from Estimation to Testing). Let {P1, ..., PN} ⊆ P, and let δ = minj ̸=k ρ(θ(Pj), θ(Pk)),
Then

R∗ = inf
θ̂
sup
P

ES∼P

[
Φ ◦ ρ(θ(P ), θ̂(S))

]
≥ Φ

(
δ

2

)
inf
Ψ

max
j∈[N ]

PS∼Pj
(Ψ(S) ̸= j) .

𝜃(𝑃1) 𝜃(𝑃2) 𝜃(𝑃3)

Τ𝛿 2

𝜃(𝑃)

Figure 1: Illustrative figure for Theorem 3. The radius of each circle is δ/2. If N is too large (δ is small), Ψ(δ/2)
will be small. But if N is small (δ is large), PS∼Pj (Ψ(S) ̸= j) will be small as it may be harder to distinguish between
the alternatives.
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Proof First observe

R∗ = inf
θ̂

sup
P∈P

ES [Φ ◦ ρ(θ(P ), θ̂(S))] (1)

≥ inf
θ̂

max
j=1,...,N

Ej [Φ ◦ ρ(θj , θ̂(S))] (2)

because instead of taking sup over all possible distributions P , we only take sup over the selected sub-
set {P1, ..., PN}, which gives a smaller supremum (notation details: θj = θ(Pj), Pj(·) = PS∼Pj

(·),Ej [·] =
ES∼Pj

[·]). Now, Markov’s inequality gives

Ej [Φ ◦ ρ(θj , θ̂(S))] ≥ t · Pj(Φ ◦ ρ(θj , θ̂(S)) ≥ t)

Substitute into (2) with t
∆
= Φ(δ/2), we get

R∗ ≥ inf
θ̂

max
j=1,...,N

Φ

(
δ

2

)
· Pj

(
Φ ◦ ρ(θj , θ̂) ≥ Φ

(
δ

2

))
(3)

= inf
θ̂

max
j=1,...,N

Φ

(
δ

2

)
· Pj

(
ρ(θj , θ̂) ≥

δ

2

)
(4)

where (4) follows by Φ being non-decreasing.

Next, we continue by pulling in hypothesis test perspective. Given any estimator θ̂, define a corresponding
hypothesis test Ψθ̂(S) = argminj=1,...,N ρ(θj , θ̂(S)). Claim event {Ψθ̂(S) ̸= j} implies event {ρ(θj , θ̂(S)) ≥
δ/2} (i.e. the first set is a subset of the second). Suppose not, then we would have

ρ(θj , θ̂(S)) < δ/2

while
Ψθ̂(S) = k ̸= j

which then give
ρ(θ̂(S), θk) ≤ ρ(θ̂(S), θj) < δ/2

by the definition of Ψ. By triangle inequality,

ρ(θj , θk) ≤ ρ(θj , θ̂(S)) + ρ(θ̂(S), θk) < δ

But this cannot happen because our choice of θ’s insist ρ(θj , θk) ≥ δ for any k ̸= j. Thus our proof by
contradiction works and we get

Pj(Ψθ̂(S) ̸= j) ≤ Pj

(
ρ(θj , θ̂(S)) ≥

δ

2

)
(5)

Substitute (5) back into (4) yields

R∗ ≥ inf
θ̂

max
j=1,...,N

Ψ

(
δ

2

)
· Pj(Ψθ̂(S) ̸= j) (6)

= inf
Ψ

θ̂

for all θ̂

max
j=1,...,N

Ψ

(
δ

2

)
· Pj(Ψθ̂(S) ̸= j) (7)

≥ Ψ

(
δ

2

)
· inf
all Ψ

max
j=1,...,N

Pj(Ψ(S) ̸= j) (8)

where (7) is because the quantity only involves Ψθ̂, so it does not matter if I put θ̂ or Ψθ̂ for the infimum.

And (8) is because {Ψθ̂ : all θ̂} ⊂ {all possible hypothesis tests}, and infimum over a larger set gets smaller.
This concludes the proof.

Going forward, we will apply this theorem to develop the LeCam (via binary hypothesis testing) and
Fano (via multiple hypothesis testing) methods.
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3 Digression: Distances / Divergence between Distributions

Let P,Q be two probability distributions with density functions p(x), q(x) respectively. The following are
some important distances / divergence. Here I use

∫
to mean

∫
R,

∫
Rn or

∫
Ω
if there is no confusion.

1. KL-divergence (Kullback-Leibler)

KL(P,Q) =

∫
log

dP

dQ
dP =

∫
log

p(x)

q(x)
p(x)dx

2. Total Variation (TV) distance

TV (P,Q) = sup
A

|P (A)−Q(A)|

where A ⊂ Ω is any event set.

3. L1 distance

||P −Q||1 =

∫
|p(x)− q(x)|dx

4. Hellinger distance

H2(P,Q) =

∫ (√
p(x)−

√
q(x)

)2

dx = 2− 2

∫ √
p(x)q(x)dx

Finally, we also define the following affinity measure between two distributions P,Q:

||P ∧Q|| =
∫

min(p(x), q(x))dx

. Notice affinity is always in between 0 and 1, and if p, q are close, think about the extreme case where p = q,
then affinity measure will be close to 1; on the other hand, if p, q looks very different, think about the case
when p is high, q is close to 0 (and the other way around), then affinity is close to 0.

Here are some useful facts about the quantities above:

1. For product distributions, i.e. think about n i.i.d. sample points,

KL(Pn, Qn) = n ·KL(P,Q)

because under Pn the density function is p(x1)p(x2) · · · p(xn) by i.i.d. and then use property of log;

H2(Pn, Qn) = 2− 2

(
1− 1

2
H2(P,Q)

)n

same idea here.

2.

TV (P,Q) =
1

2
||P −Q||1 = 1− ||P ∧Q||

3.
H2(P,Q) ≤ ||P −Q||1 = 2TV (P,Q)

4. (Pinsker’s inequality)

TV (P,Q) ≤
√

1

2
KL(P,Q)
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5.

||P ∧Q|| ≥ 1

2
· e−KL(P,Q)

Proof for (1)-(4) in the list above is for HW2, and (5) is left for next lecture. To end the lecture, we provide
couple examples.

1. P = N (µ1, σ
2) and Q = N (µ2, σ

2), then

KL(P,Q) =

∫
log

e−
(x−µ1)2

2σ2

e−
(x−µ2)2

2σ2

· p(x)dx

=
1

2σ2

∫ [
(x− µ2)

2 − (x− µ1)
2
]
· p(x)dx

=
1

2σ2

[∫
(x− µ2)

2p(x)dx−VarX∼P (X)

]
=

1

2σ2

[∫ [
(x− µ1)

2 + (µ1 − µ2)
2 + 2(x− µ1)(µ1 − µ2)

]
p(x)dx−VarX∼P (X)

]
=

1

2σ2

[
VarX∼P (X) + (µ1 − µ2)

2 + 2(µ1 − µ2)

∫
(x− µ1)p(x)dx−VarX∼P (X)

]
=

1

2σ2
(µ1 − µ2)

2

where the idea is to repeatedly use Var(X) = E
[
(X − E[X])2

]
= E[(X −µ1)

2] =
∫
(x−µ1)

2p(x)dx for
example in X ∼ P ; and E[X] = µ1 for X ∼ P to make the integral become 0 in the second to last
equality.

2. P = Ber(p) and Q = Ber(q), where “Ber” stands for Bernoulli distribution. Then, use probability
mass function (p.m.f.) for discrete random variable here and recall p.m.f.(x) = px · (1 − p)1−x for
X ∼ Ber(p), we get

KL(P,Q) =
∑
x=0,1

log
px(1− p)1−x

qx(1− q)1−x
· px(1− p)1−x

= (1− p)[log(1− p)− log(1− q)] + p(log p− log q)

But such quantity is not too easy to work with. Use Pinsker’s inequality above, we have KL(P,Q) ≥
2TV 2(P,Q), and TV (P,Q) = 1

2

∑
x |p(x)−q(x)| = |p−q| for discrete P,Q (thus use summation instead

of integral on the right hand side), so

KL(P,Q) ≥ 2(p− q)2

Next, going back to the precise KL(P,Q) above, write in the form of

log
1− p

1− q
+ p · log p(1− q)

q(1− p)

now use the inequality log x ≤ x− 1, we get

KL(P,Q) ≤ (p− q)2

q(1− q)(1− p)
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