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In this lecture, we begin by recapping the minimax lower bounds from Reduction to Testing Theorem
and the KL divergence. We then introduce Le Cam’s method to obtain a lower bound by considering binary
hypothesis testing specifically. Finally, we obtain a specific form of lower bound as a consequence of Le
Cam’s method and then see its applications through some examples of mean estimation and regression.

1 Properties of Divergences (cont’d)

We begin by proving statement 5 from last lecture below.

Proposition 1. The relation ∥P ∧Q∥ ≥ 1
2 exp(−KL(P,Q)) holds.

Proof

2∥P ∧Q∥ = 2

∫
min(p(x), q(x)) dx

≥ 2

∫
min(p(x), q(x)) dx−

(∫
min(p(x), q(x)) dx

)2

=

∫
min(p(x), q(x)) dx

(
2−

∫
min(p(x), q(x)) dx

)
=

(∫
min(p(x), q(x)) dx

)(∫
max(p(x), q(x)) dx

)
(1)

because min(p(x), q(x))+max(p(x), q(x)) = p(x)+q(x) and
∫
p(x)dx =

∫
q(x)dx = 1. With Cauchy-Schwartz

inequality, i.e.
∫
|fg|dx ≤

√∫
f2dx ·

√∫
g2dx,

(1) ≥
(∫ √

min(p(x), q(x))max(p(x), q(x)) dx

)2

(2)

Continue, with min(p, q) ·max(p, q) = pq,

(2) =

(∫ √
p(x)q(x) dx

)2

= exp

(
2 log

(∫
p(x)

√
q(x)

p(x)

)
dx

)
(property of exp and log)

≥ exp

(
2

∫
p(x) log

(√
q(x)

p(x)

)
dx

)
(3)
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where inequality (3) follows from Jensen’s inequality

log

(
E

[√
q(x)

p(x)

])
≥ E

[
log

(√
q(x)

p(x)

)]

Finally, by property of log again,

(3) = exp

(
−
∫
p(x) log

(
p(x)

q(x)

)
dx

)
= exp(−KL(P,Q))

2 Le Cam’s Method

Now, we introduce the Neyman-Pearson Test, and then we will show that it can minimize the sum of errors.

Definition 1 (Neyman-Pearson Test). Given a binary hypothesis test between two alternatives P0 and P1

with densities p0 and p1, let S denote an i.i.d dataset. Then, the Neyman-Pearson test is the form:

ψNP(S) =

{
0 if p0(S) ≥ p1(S)

1 if p0(S) < p1(S)

Lemma 1. For any other test ψ, the Neyman-Pearson test minimizes the sum of errors. That is, ∀ψ,

P0(ψ ̸= 0) + P1(ψ ̸= 1) ≥ P0(ψNP ̸= 0) + P1(ψNP ̸= 1)

where P0(ψ ̸= 0) = PS∼P0(ψ ̸= 0).

Proof

P0(ψ ̸= 0) + P1(ψ ̸= 1)

= P0(ψ = 1) + P1(ψ = 0)

=

∫
ψ=1

p0(x) dx+

∫
ψ=0

p1(x) dx

=

∫
ψ=1,ψNP=1

p0(x) dx+

∫
ψ=1,ψNP=0

p0(x) dx+

∫
ψ=0,ψNP=0

p1(x) dx+

∫
ψ=0,ψNP=1

p1(x) dx

≥
∫
ψ=1,ψNP=1

p0(x) dx+

∫
ψ=1,ψNP=0

p1(x) dx+

∫
ψ=0,ψNP=0

p1(x) dx+

∫
ψ=0,ψNP=1

p0(x) dx (4)

=

∫
ψ=1

p0(x) dx+

∫
ψ=0

p1(x) dx = P0(ψNP = 1) + P1(ψNP = 0) = P0(ψNP ̸= 0) + P1(ψNP ̸= 1)

where the inequality (4) is by how Neyman-Pearson lemma is setup.

One important note, for S = (X1, ..., Xn), densities p0, p1 are the joint distribution of those n random

variables, i.e. p
(n)
0 (x1, ..., xn) = p0(x1) · · · p0(xn), where p0 is the density of a single X because Xi’s are i.i.d.

Next, we show the connection between hypothesis testing and total variation distance and later use this
to yield lower bounds on minimax error by Le Cam’s Method.
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Corollary 1 (Bretagnolle-Huber inequality). For any hypothesis test ψ, we have,

P0(ψ ̸= 0) + P1(ψ ̸= 1) ≥ ∥P0 ∧ P1∥ = 1− TV(P0, P1) ≥ 1

2
exp(−KL(P0, P1))

Proof

P0(ψ ̸= 0) + P1(ψ ̸= 1) ≥
∫
ψNP=1

p0(x) dx+

∫
ψNP=0

p1(x) dx

≥
∫
p0≤p1

p0(x) dx+

∫
p1<p0

p1(x) dx (Definition of NP test)

=

∫
min (p0(x), p1(x)) dx

= ∥P0 ∧ P1∥

≥ 1

2
exp(−KL(P0, P1))

where the first inequality is due to the Neyman-Pearson lemma above, and the last inequality is due to the
relation between TV distance and KL divergence.

Same as in the Neyman-Pearson test, P0, P1 are joint distributions if S contains more than one sample
point. From this Corollary, we can see that the smaller the KL divergence or TV distance between P0 and
P1, i.e. the more similar P0 and P1, the larger the testing error. For binary hypothesis testing, we can simply
combine ”max≥avg” with the BH inequality and get the nice result below:

inf
ψ

sup
j∈{0,1}

Pj(ψ(S) ̸= j) ≥ inf
ψ

(
1

2
P0(ψ(S) ̸= 0) +

1

2
P1(ψ(S) ̸= 1)

)
(5)

≥ 1

2
∥P0 ∧ P1∥ (6)

Combining all the results above, we can now show Le Cam’s method for estimation problems.

Theorem 1 (Le Cam’s Method for Estimation Problems). Let P0, P1 ∈ P , let δ = ρ
(
θ(P0), θ(P1)

)
and S

be drawn i.i.d. from the distribution in P . Then,

R∗
n = inf

θ̂
sup
P

ES
[
Φ ◦ ρ(θ(P ), θ̂(S))

]
≥ 1

2
Φ

(
δ

2

)
∥Pn0 ∧ Pn1 ∥

(here we directly write Pn0 , P
n
1 to distinguish from P0, P1 because S contains n points, whereas before we omit

the superscript n and emphasize they are joint distributions since we don’t know the sample size.)

Proof We use the Reduction to Test Theorem (previous lecture) and inequality (6) to prove the theorem.

R∗
n ≥ Φ

(
δ

2

)
· inf
ψ

max
j∈{0,1}

Pnj (ψ ̸= j) ≥ 1

2
Φ

(
δ

2

)
∥Pn0 ∧ Pn1 ∥
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Corollary 2 (Lower bound risk by a constant). Let S has sample size n, i.i.d. from some P ∈ P. Pick
P0, P1 ∈ P. If both the following hold,

ρ(θ(P0), θ(P1)) ≥ δ (7)

KL(Pn0 , P
n
1 ) ≤

1

n
log 2 (8)

then R∗
n ≥ 1

8 · Φ
(
δ
2

)
.

Proof Combine the properties of various divergences (listed at the beginning of this document) and the
two assumptions here,

||Pn0 ∧ Pn1 || ≥
1

2
e−KL(P

n
0 ,P

n
1 ) =

1

2
e−nKL(P0,P1) ≥ 1

4

Invoke the theorem 1 above, we obtain the desired result.

Remark The first assumption (5) says two distributions are distinguishable, which is the essential part
for the Reduction to Test theorem; while the second assumption (6) says such difference is not too much,
and we call such phenomenon statistically indistinguishable.

3 Examples for Le Cam’s Method

To be more precise, the main tool here to lower bound R∗
n is Corollary 2 above.

3.1 Family of normal distributions

Take P = {N (µ, σ2) : µ ∈ R}, where σ2 is known. S = {x1, ..., xn} are n i.i.d. samples. We focus on the
estimator θ(P ) = µ, and use Φ(t) = t2, ρ(θ1, θ2) = |θ1 − θ2| for the distances. Take two distributions from
the family, P0 = N (0, σ2), P1 = N (δ, σ2), then they have ρ(θ(P0), θ(P1)) = δ, giving the first assumption of
Corollary 2. For the second assumption, because

KL(P0, P1) =
δ2

2σ2
(9)

we pick

δ = σ

√
2 log 2

n
(10)

Now, invoke Corollary 2, we obtain

R∗
n ≥ 1

8

(
δ

2

)2

=
log 2

16
· σ

2

n

Finally, because sample mean has risk σ2/n, we conclude it’s minimax rate.

3.2 Distribution with finite support

Take P = {P : supp(P ) ⊂ [0, 1]} and use the same θ,Φ, ρ as in the previous example. Take two distributions
from P, P0 = Ber(1/2 + δ) and P1 = Ber(1/2). From the ending example of previous lecture,

KL(P0, P1) ≤
(1/2 + δ − 1/2)2

1/2(1− 1/2)
= 4δ2

For the second assumption of Corollary 2, pick

δ =
1

2

√
log 2

n
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Therefore, we conclude

R∗
n ≥ log 2

128
· 1
n

Finally, because sample mean achieves the risk 1/4n, it is the minimax rate.

3.3 A simplified regression problem

Let S = {(x1, y1), ..., (xn, yn)} where xi
i.i.d.∼ Unif([0, 1]) and yi is drawn from a distribution with mean f(xi)

and variance bounded by σ2. We also assume some regularity of the underlying f . Formally, the distribution
family we work with is

P = {Px,y : Px = Unif([0, 1]),E[Y |X = x] = f(x), f L-Lipschitz and bounded in [0, 1],Var[Y |X = x] ≤ σ2}

We estimate θ(P ) = f(1/2), i.e. we only care about the middle point of f instead of the whole picture of
f(x). Finally, we use the same Φ, ρ as before.

Now time to solve the lower bound. Pick two underlying functions f0, f1 so the distributions

P0 : Y |X = x ∼ N (f0(x), σ
2)

P1 : Y |X = x ∼ N (f1(x), σ
2)

Remember in P, we don’t force the conditional distribution to be normal, but picking normal distribution
certainly satisfies the condition of P. Next, the first assumption of Corollary 2 requires

|f0(1/2)− f1(1/2)| ≥ δ

and f ’s are required to be L-Lipschitz, so we define f0 ≡ 0; and f1 = 0 outside [1/2−δ, 1/2+δ], f1(1/2) = δ,
and linear elsewhere (diagram for f1 below.) Rest is left for next lecture.

Figure 1: Definition of f1, where f1 = 0 outside [1/2− δ, 1/2 + δ].
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