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Previously, we defined Le Cam’s method and saw examples where we can reduce point estimation to binary
hypothesis testing to establish the lower bound. However, we discussed how Le Cam’s method is insufficient
beyond binary hypothesis testing. In the previous lecture, we started a brief review of Information Theory
and set the stage for Fano’s method which will be more appropriate for the lower bounds of our interest. In
this lecture, we wrap up the review, prove Fano’s inequality, and apply it to define Fano’s method.

1 Information Theory Review

1.1 Entropy

Definition 1 (Entropy, Joint Entropy, and Conditional Entropy). Let X be an RV with distribution P .

H(X) = Ex∼P [− log p(x)],

H(X,Y ) := Ex,y∼PXY
[− log p(x, y)]

H(X|Y ) := Ex,y∼PXY
[− log p(x|y)].

The conditional entropy captures how much information is left in X after knowing Y = y. That is,

H(X|Y = y) = −
∑
x∈X

p(x|y) log(p(x|y)).

We also see

Ey∼Y [H(X|Y = y)] =
∑
y∈Y

p(y)H(X|Y = y)

=
∑
y∈Y

−p(x, y) log p(x|y)

= H(X|Y ).

Lemma 1 (Chain Rule for Entropy).

H(X1, ...Xn) =

n∑
i=1

H(Xi|X1...Xi−1) (1)

H(X1, ...Xn|Y ) =

n∑
i=1

H(Xi|X1...Xi−1, Y ) (2)
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Proof We will prove (1) by induction on n ≥ 2. Note that,

p(x1, x2) = p(x1)p(x2|x1) ⇒ log(p(x1, x2)) = log(p(x1)) + log(p(x2|x1))

Taking expectation with respect to X1, X2, we get

H(X1, X2) = H(X1) +H(X2|X1).

Then, for the inductive case, we obtain

H(X1, , Xn) = H(X1, . . . , Xn−1) +H(Xn|X1, , Xn−1)

= H(X1, . . . , Xn−2) +H(Xn−1|X1, . . . , Xn−2) +H(Xn|X1, . . . , Xn−1)

= . . . . . .

=

n∑
i=1

H(Xi|X1...Xi−1),

which proves (1). The proof of (2) will follow a similar argument.

Definition 2 (KL divergence of distributions P and Q).

KL (P,Q) = EX∼P

[
log

(
p (X)

q (X)

)]

1.2 Mutual Information

Definition 3 (Mutual Information (MI)). Let X,Y be rv’s with joint distribution PXY and marginals PX ,
PY . Then, MI is:

I(X;Y ) = KL(PXY , PX × PY ) = EPXY

[
log

(
p(x, y)

p(x)p(y)

)]
We will use the following properties:

1.) KL(P,Q) ≥ 0 with equality iff P = Q

2.) I(X;Y ) ≥ 0 with equality iff X ⊥⊥ Y

3.) (Conditioning reduces entropy)H(X|Y ) ≤ H(X)

4.) (Symmetry) I(X;Y ) = I(Y ;X)

5.) I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

6.) I(X;Y ) = H(X) +H(Y )−H(X,Y )

7.) I(X;X) = H(X)

Proof

1.) Apply Jensen’s inequality

2.) Follows from Property (1)

3.) Follows from Property (5)
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5.) We have

I(X;Y ) = EX,Y

[
log

P (X,Y )

P (X)P (Y )

]
= EX,Y

[
log

P (X)P (Y |X)

P (X)P (Y )

]
= −EY [logP (Y )] + EX,Y [logP (Y |X)]

= H(Y )−H(Y |X)

6.) By Chain Rule (Lemma 1), we have

H(X,Y ) = H(Y ) +H(X|Y )

= H(Y ) +H(X)− I(X;Y )

7.) We have

I(X;X) = H(X)−H(X|X)

= H(X)− 0

Definition 4 (Conditional Mutual Information).

I(X;Y |Z) := H(X|Z)−H(X|Y, Z)

= EX,Y,Z

[
log

P (X,Y |Z)

P (X|Z)P (Y |Z)

]
Lemma 2 (Chain Rule for Mutual Information).

I(X1, . . . , Xn;Y ) =

n∑
i=1

I(Xi;Y |X1, . . . , Xi−1)

Proof We prove for n = 2. The same argument will apply for all n > 2.

I(X1, X2;Y ) = H(X1, X2)−H(X1, X2|Y )

= H(X1) +H(X2|X1)− (H(X1|Y ) +H(X2|X1, Y ))

= I(X1;Y ) + I(X2;Y |X1),

where the first equality follows from Property 5 and the last equality follows by applying Lemma 1 for
entropy and conditional entropy.

Lemma 3 (Data Processing Inequality). Let X,Y, Z form a Markov chain X → Y → Z such that X ⊥⊥ Z|Y .
Then,

I(X;Y ) ≥ I(X;Z).

Hence,
H(X|Y ) ≤ H(X|Z).
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Proof We apply the chain rule for MI Lemma 2 in two ways:

I(X;Y, Z) = I(X;Z) + I(X;Y |Z)

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ).

Since X ⊥⊥ Z|Y , we have I(X;Z|Y ) = 0. Also, I(X;Y |Z) ≥ 0. Thus, we have I(X;Y ) ≤ I(X;Y ). To prove
the second statement, we observe

H(X)−H(X|Z) = I(X;Z) ≤ I(X;Y ) = H(X)−H(X|Y ).

Remark 1.1. Data Processing Inequality make the following connections to Hypothesis Testing:

◦ In hypothesis testing, we will assume a prior on the alternatives {P1, . . . , PN} ⊆ P. Let X ∈ [N ] forms
a selection from {P1, . . . , PN}. Then, the data Y is generated from the chosen PX .

◦ Now we have a test Z to estimate X from data Y .

◦ I(X;Z) ≤ I(X;Y ) means that the test Z contains no more information about X than the data Y
already does.

We will now present Fano’s inequality, which we will then use to develop Fano’s method.

Theorem 1.1. (Fano’s inequality) Let X be a discrete random variable with a finite support X . Let X,Y, X̂
form a Markov chain X → Y → X̂. Denote Pe = P(X̂ ̸= X) and

h (Pe) = −Pe log (Pe)− (1− Pe) log (1− Pe) .

Then,
H(X | Y ) ≤ H(X | X̂) ≤ Pe log(|X |) + h (Pe) . (3)

Hence,

P(X ̸= X̂) ≥ H(X | Y )− log(2)

log(|X |)
.

Remark 1.2 (Connection to Testing). We can view X as defining a prior on {P1, . . . , PN}, and X̂ as trying
to guess X after observing data Y . If Y uniquely determines X, then we expect to perfectly predict X from
Y i.e. H(X|Y ) = 0 and Pe = 0. Fano’s inequality quantifies how well we can estimate X from Y based on
the conditional entropy (where H(X|Y ) > 0).

Proof Let E = 1
{
X ̸= X̂

}
(thus, if E = 1, there is an error). Using the chain rule in two different ways,

H(E,X | X̂) = H(X | X̂) +H(E | X, X̂)

= H(E | X̂) +H(X | E, X̂). (4)

Here, since E is a function of X, X̂,
H(E | X, X̂) = 0. (5)

Also, since conditioning reduces entropy,

H(E | X̂) ≤ H(E) = h (Pe) , (6)
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where the equality follows by the definition of h(·). By the definition of the conditional entropy,

H(X | E, X̂) = P(E = 0)︸ ︷︷ ︸
=1−Pe

H(X | X̂, E = 0)︸ ︷︷ ︸
=0

+P(E = 1)︸ ︷︷ ︸
=Pe

H(X | X̂, E = 1)︸ ︷︷ ︸
≤H(X)

≤ PeH(X) ≤ Pe log(|X |), (7)

where H(X | X̂, E = 0) follows since E = 0 implies X = X̂ and the last inequality follows from the property
of discrete X. Thus, (4)-(7) together imply that H(X | X̂) ≤ h (Pe) + Pe log(|X |). We have proved the
second inequality in the theorem.

Next, we will show the first inequality in the theorem. By the data processing inequality, I(X, X̂) ≤
I(X,Y ). Since we also have I(X, X̂) = H(X) − H(X | X̂) and I(X,Y ) = H(X) − H(X | Y ), the next
inequality is implied:

H(X | Y ) ≤ H(X | X̂).

Since h (Pe) is a entropy for a binary random variable, h (Pe) ≤ log(2). This and (3) together imply the
third inequality in the theorem:

Pe ≥
H(X | Y )− log(2)

log(|X |)
.

2 Fano’s method

Given Fano’s inequality, we will derive two different types of lower bounds of the minimax risk. The first
bound is called the global Fano’s method since it contains a Kullback-Leibler divergence between one distri-
bution and the mixture of all other distributions in the alternatives. The second bound is called the local
Fano’s method since it contains only the KL divergences between the alternatives.

Theorem 2.1. Let S be drawn (not necessary i.i.d.) from some joint distribution P ∈ P. Let {P1, · · · , PN} ⊆
P, and denote P̄ = 1

N

∑N
j=1 Pj (an equally weighted mixture distribution). Denote the minimax risk

R∗ = inf
θ̂

sup
P∈P

E
[
Φ ◦ ρ

(
θ(P ), θ̂(S)

)]
.

Let δ = minj ̸=k ρ (θ (Pj) , θ (Pk)). Then, the following statements are true:
(I) (Global Fano’s method)

R∗ ≥ Φ

(
δ

2

)(
1−

1
N

∑N
j=1 KL

(
Pj , P̄

)
+ log(2)

log(N)

)
.

(II) (Local Fano’s method)

R∗ ≥ Φ

(
δ

2

)(
1−

1
N2

∑
1≤j,k≤N KL (Pj , Pk) + log(2)

log(N)

)
.

Remark 2.1. The global Fano’s method is stronger (tighter), but the local Fano’s method is easier to apply
since KL (Pj , Pk) is easier to compute than KL

(
Pj , P̄

)
.
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