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We have explored the idea of minimax optimality and tried to obtain lower bounds for minimax risk by
reducing estimation problems to hypothesis testing. Specifically in the previous lecture, we defined the Le
Cam’s method to reduce point estimation to binary hypothesis testing and proceeded to establish the lower
bound. In this lecture, we continue with the examples of Le Cam’s method to illustrate its consequences.
We then start reviewing materials from information theory, which will be necessary in the coming lectures.

1 A Simplified Regression Problem

Let S = {(x1, y1), . . . , (xn, yn)}, where xi
i.i.d∼ Unif([0, 1]) and yi is drawn independently from a distribution

with mean f(xi) and variance bounded by σ2. We assume that f : [0, 1] → [0, 1], is L-Lipschitz. That is,

P = {PXY | PX = Unif[0, 1], E[Y |X = x] = f(x) : f L-Lipschitz and bounded in [0, 1], Var(Y |X = x) ≤ σ2}.

Our goal is to estimate θ(P ) := f(1/2) (i.e., rather than the entire f on [0,1]). Hence, this is a point
estimation problem.

1.1 Lower Bound

We first obtain the lower bound. To this end, we construct two L-Lipschitz functions f0 and f1 such that

P0 : Y |X = x ∼ N (f0(x), σ
2)

P1 : Y |X = x ∼ N (f1(x), σ
2).

Recall that we want the gap between two parameters to be large, i.e. δ = |f0(1/2)− f1(1/2)|, while ensuring
that the two distributions are hard to distinguish, i.e. small KL(P0, P1). We choose the following f0 and f1:

f0(x) := 0 ∀ x ∈ [0, 1]

f1(x) :=


L(x− (1/2− δ/L)), if x ∈ [1/2− δ/L, 1/2)

L(1/2 + δ/L− x), if x ∈ [1/2, 1/2 + δ/L)

0, else

The function f1 is in Figure 1.
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Figure 1: Here, we’d need δ/L ≤ 1/2 for f1 to be well-defined.

For obtaining the lower bound as derived in Corrollary 2 from previous lecture, recall that we need to
choose δ such that KL(P0, P1) ≤ log 2

n . So, we first compute KL(P0, P1):

KL(P0, P1) =

∫ 1

0

∫ ∞

−∞
P0(x, y) log

(P0(x, y)

P1(x, y)

)
dydx

=

∫ 1

0

∫ ∞

−∞
P0(y|x)P0(x)︸ ︷︷ ︸

=1

log
(P0(y|x)

=1︷ ︸︸ ︷
P0(x)

P1(y|x)P1(x)︸ ︷︷ ︸
=1

)
dydx

=

∫ 1

0

∫ ∞

−∞
P0(y|x) log

(P0(y|x)
P1(y|x)

)
dydx

=

∫ 1

0

KL(N (0, σ2),N (f(x), σ2))dx

=

∫ 1

0

1

2σ2
(0− f(x))2dx

(
∵ KL

(
N (µ1, σ

2),N (µ2, σ
2)
)
=

1

2σ2
(µ1 − µ2)

2
)

=
1

2σ2

(∫ 1/2

1/2−δ/L

L2(x− 1/2 + δ/L)2dx+

∫ 1/2+δ/L

1/2

L2(1/2 + δ/L− x)2dx
)

=
δ3

3σ2L
.

Hence, we can choose

δ :=
(3σ2 · L · log 2)1/3

n1/3

to ensure the inequality. Corrollary 2 now implies that

R∗
n ≥ 1

8
Φ
(δ
2

)
=

1

8
· δ

2

4
= C · σ

4/3L2/3

n2/3
(1)

where C = 1
32 (3 log 2)

1/3. This gives us the lower bound.

Remark 1.1. Notice that for our construction, since we need δ/L ≤ 1/2 (see Figure 1), the lower bound in
Equation (1) applies only if n ≥ 3σ2(log 2)2/L2.
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Remark 1.2. Observe that we obtained a weaker bound of 1/n2/3, compared to when we estimated the
normal mean in which case we had a 1

n rate. This is because we only observe data samples around the point
X = 1/2.

1.2 Upper Bound

Let us now derive the upper bound. While our focus is on lower bounds, the techniques can be useful in
general regression problems later on. The idea is to estimate θ = f(1/2) by taking the average of points that
are close to x = 1/2. Towards this, we define:

Figure 2: Idea: Estimate θ = f(1/2) by taking the average of points that are close to x = 1/2

N(S) :=

n∑
i=1

1{xi ∈ (1/2− h, 1/2 + h)},

and

θ̂(S) :=

1/2, if N = 0

1
N

n∑
i=1

yi1{xi ∈ (1/2− h, 1/2 + h)}, if N > 0

We wish to compute the risk of this estimator. Define now a good event, G := {N(S) ≥ nh}. Observe that
N(S) ∼ Binom(n, 2h), and thus E[N(S)] = 2nα. Intuitively, G happens whenever at least half of the points
fall near θ(1/2). It then follows by Hoeffding’s inequality that

P(Gc) = P

(
n∑

i=1

1{xi ∈ (1/2− h, 1/2 + h)} ≤ nha

)
≤ exp (−2nh2),

which in turn leads by the tower property to the following:

E[(θ̂(S)− θ)2] = E[(θ̂(S)− θ)2|G] P(G)︸ ︷︷ ︸
≤1

+ E[(θ̂(S)− θ)2|Gc]︸ ︷︷ ︸
≤θ2 ≤1

P(Gc)︸ ︷︷ ︸
≤exp (−2nh2)

. (2)
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Given this, we want to upper bound the term E[(θ̂(S)− θ)2|G] as follows. For notation, we let Ai = 1{xi ∈
(1/2− h, 1/2 + h)}).

(θ̂(S)− θ)2 =
( 1

N

n∑
i=1

Aiyi − θ
)2

=
( 1

N

n∑
i=1

Ai(yi − f(xi))︸ ︷︷ ︸
v

+
1

N

n∑
i=1

Ai(f(xi)− θ)︸ ︷︷ ︸
b

)2
.

Here, we can think of v, b as the variance and bias, respectively. Then, we have

∴ E[(θ̂(S)− θ)2|G] = E[(v + b)2|G] = E[b2|G] + E[v2|G] + 2E[bv|G]. (3)

We now compute each of the three conditional expectations.

E[v2|G] = E
[
E
[( 1

N

N∑
i=1

Ai(yi − f(xi))
)2

|G,X1, . . . , Xn

]]
= E

[
E
[ 1

N2

N∑
i=1

Ai(yi − f(xi))
2|G,X1, . . . , Xn

]]
≤ E

[ 1

N2
·Nσ2|G

]
= E

[
1

N
· σ2|G

]
≤ σ2

nh
,

where the first inequality follows from the bounded variance and the second inequality follows from the
definition of good event G. Now, for any xi ∈ (1/2− h, 1/2 + h), we have by assumption

|f(xi)− f(1/2)| ≤ L|xi − 1/2| ≤ Lh,

which gives

|b| ≤

∣∣∣∣∣ 1N
N∑
i=1

Ai(f(xi)− θ)

∣∣∣∣∣
≤ 1

N

N∑
i=1

Ai |f(xi)− θ|

≤ 1

N
Lh

N∑
i=1

Ai = Lh.

Hence, we obtain

E[b2|G] ≤ L2h2.

Finally, we have

E[bv|G] = E
[[( 1

n

n∑
i=1

Ai(yi − f(xi))
)( 1

n

n∑
i=1

Ai(f(xi)− θ)
)
|G,X1, . . . , Xn

]]
= 0 (∵ yi − f(xi)|Xi = xi),
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since the cross terms vanish as they have zero mean and are independent. Combining these, we get

E[(θ̂(S)− θ)2] ≤ σ2

nh
+ L2h2 + e−2nh2

. (4)

Choosing h = σ2/3/(L2/3n1/3) gives

⇒ E[(θ̂(S)− θ)2] ≤ 2σ4/3L2/3

n2/3
+ exp

(
−2σ4/3

L4/3
n1/3

)
. (5)

Remark 1.3. Observe that the first term above is precisely the lower bound we obtained earlier. But this
requires the specific choice of h as above and the knowledge of both σ and L, which may or may not be known.
If one need to decide h without knowing σ and L, they can for instance set h = 1

N1/3 . This will lead to the
following loose upper bound that is tight in n but not σ or L:

E[(θ̂(S)− θ)2] ≤ e−2n1/3

+
1

n2/3
(L2 + σ2). (6)

2 Insufficiency of Le Cam’s method

The previous section shows us how Le Cam’s method can be applied to point estimations via binary hypoth-
esis testing. However, when we do high-dimensional parameter estimation, we would want to distinguish
between multiple hypotheses for better estimation bounds. The following is an example of such problems:
mean estimation for d-dimensional Gaussians.

Consider the family P =
{
N
(
µ, σ2I

)
| µ ∈ Rd

}
, with known σ2. Suppose we have S ∼ P ∈ P, and

Φ ◦ ρ(θ1, θ2) := ∥θ1 − θ2∥2 .

We wish to estimate θ(P ) = Ex∼P [x]. We start with the upper bound.

Consider the sample mean θ̂(S) = 1
n

∑n
i=1 xi. Then, we have

R(θ̂, P ) = ES∼P

[(
θ̂(S)− θ(P )

)2]

=

d∑
j=1

ES

( 1

n

n∑
i=1

xij − θj

)2


≤ σ2d

n
,

since we know for 1-d Gaussian we have σ2/n. Notice that the above upper bound becomes increasingly
loose as d increases. Now, we examine the lower bound via Le Cam’s method.

Let P0 = N (0, σ2I) and P1 = N (δv, σ2I), where v ∈ Rd s.t. ∥v∥2 = 1. As before, we need to choose δ
such that KL(P0, P1) ≤ log 2

n . Since P0 and P1 are Gaussian, we have KL(P0, P1) = δ2/2σ2. Thus, choosing

δ =
√

2 log 2/n suffices. By Corrollary 2, we have

R∗
n = inf

θ̂
sup
P∈P

ES

[
Φ ◦ ρ

(
θ(P ), θ̂(S)

)]
≥ log 2

16
· σ

2

n︸ ︷︷ ︸
No d factor here
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3 Review of Information Theory

Now, we pivot and review some materials from information theory, which will be useful in the coming
lectures.

3.1 Entropy

Definition 1 (Entropy of a random variable). Let X be an RV with distribution P . Then, the entropy of
X is given by

H(X) = EX [− log p(X)].

For discrete X, we have

H(X) = −
∑
x∈χ

p(x) log(p(x)),

while for continuous X,

H(X) = −
∫
χ

p(x) log(p(x))dx.

Intuitively, entropy measures the spread of the distribution, or in other words, it measures the amount of
information or uncertainty about the possible outcomes contained in the variable.

For example, we have

• X ∼ Bern(p): H(X) = −p log p− (1− p) log(1− p)

• X ∼ N (µ, σ2): H(X) = 1
2 log(2πeσ

2)

Remark 3.1. For any discrete RV X, we have

0 ≤
(a)

H(X) ≤
(b)

log |X |

(a) : use log 1/p(x) ≥ 0 since p(x) ≤ 1

(b) : by Jensen’s inequality.

Definition 2 (Joint/Conditional Entropy). We define the joint and conditional entries as follows:

H(X,Y ) := Ex,y∼PXY
[− log p(x, y)]

H(X|Y ) := Ex,y∼PXY
[− log p(x|y)].

The conditional entropy captures how much information is left in X after knowing Y = y. That is,

H(X|Y = y) = −
∑
x∈χ

p(x|y) log(p(x|y)).

Taking expectation over the values y that Y can take, we see

EY [H(X|Y )] =
∑
y

p(y)H(X|Y = y)

=
∑
x,y

−p(x, y) log p(x|y)

= Ex,y − log p(x|y)
= H(X|Y ).
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