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In this lecture we will give a proof for Fano’s method, using Fano’s inequality which was proved last
lecture. While Le Cam’s method relies on the Neyman-Pearson test for binary hypotheses, Fano’s method
considers multiple hypotheses, and it can cover more general situations. Unfortunately, proposing multiple
alternatives for Fano’s method can be more difficult than producing two alternatives for Le Cam’s method,
so in this class, we also give a way of producing multiple hypotheses via the Varshamov-Gilbert Lemma.

1 Fano’s Method

In this section we present two variants of Fano’s method, which we will prove and comment on.
Theorem 1 (Fano’s method). Let S be drawn from some P € P. Let {P1,...,Py} C P. Denote the
minimaz Tisk as
R*=inf sup E [q) op (H(P), é(S))]
6 PeP

Now, let 6 = minj»i p(6(P;),0(k)). Then the following statements are true:

1. Global Fano’s method. Let P = % Ef\;l P;, an equally weighted mixture of the alternatives. Then
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2. Local Fano’s method.
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Between the two variants of Fano’s method, the global version is stronger (tighter), but the local version
is easier to compute since KL(P;, Py,) is easier to compute than KL(FP;, P), since it can be hard to compute
the density of a mixture P. As with Le Cam’s method, we would like to obtain the strongest possible lower
bound, so we want & to be as big as possible — that is, for our alternatives P, ..., Py to be well separated. On
the other hand, we also want to minimize the KL divergence between them, which requires the alternatives
to be statistically indistinguishable. Now we prove the result.

Proof [Fano’s method]

Let us consider the following data generating process. First, define a uniform prior on {Py, ..., P,}, with
V' denoting the selection of alternative, that is, given V' = j, S is sampled from P;, i.e.
1
PV=j=—
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and by the law of total probability, we can write the marginal distribution of the data as

N
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since Ps~p, (S € A) = P;. Now, by the reduction to testing theorem, we can write

R* > &(5/2) inf max. P 5 ($(S) # 7)

> 9(8/2)inf P,y (¥(5) # V),

where we used the idea that max is greater than average. We can write this more explicitly as

Ps.v (3 ZP S) # VIV = jP(V =)

for any test . Now, since we can form the Markov chain V' — S — v, we can use Fano’s inequality to get

H(V]S) — log(2)

P(S) # V) = B,

so by the identity I(X,Y) = H(X) — H(X|Y),
H(V)—1(V|S) —log(2) I(V,S) +log(2)
PUE) £V) 2 log(V) =T e

because H(V') = log(N) for the discrete uniform distribution. Then, we have that
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It remains to relate I(V, S) and KL divergences. Let p; be the density of P;, p the density of P, and the

p the joint density of S, V. Then
Z _ _ P(5= | :J ( =J)

where here we use generalized integrals to compute the expectations (since S is continuous we integrate with
respect to the Lebesegue measure, since V' is discrete we integrate With respect to the counting measure, i.e.
a sum). Now, by noticing that P(S = s|V = v) = P;(S), P(V = j) = +, and P(S = s) = P(S) by using the
marginal distribution derivation computed in Equation 1, and blmphfylng, we get
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Notice that by combining Equations 2 and 3 we get the global Fano method, while combining Equations 2,
3 and 4 we get the local Fano method.
What is left to prove is then the claim in Equation 4, so write
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Noting that log(1/z) is convex, and that Zjvzl P;(S) is an average over the discrete uniform distribution

over {1,..., N}, we apply Jensen’s inequality to obtain
- pi(5) 1
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Then
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which proves the claim and completes the proof.

With Fano’s method, we have an alternative to Le Cam’s method to produce lower bounds for our
minimax risk. It is a convenient tool to have if just considering two alternatives is not enough for our
estimation problem at hand. We now present a convenient Corollary that will give us a convenient way of
applying the local Fano method when the data is i.i.d.

Corollary 1 (Local Fano for i.i.d. data). Let S be an i.i.d. dataset of size n drawn from some distribution
PeP. Let {P,...,Pn} be our set of alternaties such that N > 16. Let § > min;x p(6(P;),0(P)) and let

KL(P;, P;,) < &) ) Then,
R 2 59(/2)
2
Proof Applying the local Fano method for i.i.d. data (product distributions) yields
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Note that KL(P;, P;) < log( ) implies KL(P}, PJ) < log(N) by the decomposition of KL divergence for i.i.d.
data, so we get that
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where we used the condition N > 16.



Note that the condition N > 16 was not really necessary, it is just a technical condition that allows us to
get an expression with “nice” looking constants. For smaller N, we can get a similar bound with a different
constant multiplying ®(6/2). This result is what might make local Fano appealing, as we have this simple
form of the bound that might be easier to apply. However, picking ¢ > min;.y p(6(P;),0(Px)) such that
max;-; KL(P;, P;) is small can be harder than in the binary case with Le Cam’s method, so we have to be a
little more careful while constructing alternatives. Some guidelines on how we might design this alternatives
are given in the next section.

2 Constructing Alternatives

Fano’s method provides us with a stronger tool to prove lower bounds, but there remains difficulty in selecting
a set of “alternatives” {Pi,...,Py}. In particular, we need § = minj. p (0 (P;),0 (Ps)) to be sufficiently
large while simultaneously keeping max;, KL (P;, Pj,) sufficiently small. If we cannot achieve both, then
the lower bound of the minimax risk given by Fano’s method will be small.

We will discuss two common tools that are used in the construction: the Varshamov-Gilbert Lemma and
tight packings. We start with the Varshomov-Gilbert Lemma, and we will cover tight packings in the next
lecture.

3 The Varshamov—Gilbert Lemma

To get a lower bound for the minimax risk, one may find it convenient to consider alternatives indexed by a
hypercube:

P = {Pw:w:(wl,...,wd) G{O,I}d} CcP.

However, in a high-dimensional hypercube, the minimum distance will likely be too small relative to the
largest KL. To illustrate this problem, we examine the following example.
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Figure 1: A hypercube that we will use to generate our alternatives by removing a few vertices from the cube.

Example 2. (Normal mean estimation in R?)

Let P be drawn from the family P = { (yoly), p € Rd}, where ¢ is known. Let S = {X,..., X, } be
n i.i.d samples from P € P. Additionally, define p : R? x R? — R, and ® : R, — R, by p(z,y) = |z — y|
and ®(r) = x2. We want to estimate the mean

0(P) =Ex~p [X]



with respect to the minimax risk

R* = inf sup E [|0(P) — 6(S)|3] = inf sup E [® 0 p (6(P),0(S))] .
6 Pep 6 Pep

To establish an upper bound to RZ, consider the estimator 6(S) = LS X, As Var(Xy;) < o2, we
have
n d

A 2 (1 T 1 ’ Var(X; 24
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Now, to get a good lower bound for R}, we first consider alternatives from a hypercube (see Figure 1):
P = {N (6w, 021,) ;w € {0, 1}d}.
For these alternatives, we can calculate the following values:
min p (6 (P,),0(P,)) = E&lg 6w — dw'[|y

wHw’

=9, (w and w'differ on only one coordinate)

max,, . [|0w — 6’|
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The max KL divergence is too large relative to the minimum distance. Indeed, applying Corollary 1 gives us
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which is not enough to show that our upper bound — which depends on d — is tight.

This example motivates us to introduce Varshamov-Gilbert Lemma. The Varshamov-Gilbert lemma
states that we can find a large subset of {0,1}¢ such that the minimum distance between any two points in
the subset is also large. To state the lemma, we must first define the Hamming distance.

Definition 1. (Hamming distance) The hamming distance between two binary vectors w,w’ is H (w,w') =
Z;l:l 1 {wj #* w;} for w,w’ € RY. In other words, H(w,w') is the number of coordinate where w; and w;.

differ.
As promised, we now state the lemma.

Lemma 1. (Varshamov-Gilbert) Let m > 8. Then there exists Q,, C {0,1}™ such that the following are
true:

(i) 10 > 2775,

(ii) Vw,w" € Qp, H (w,w’) > m/8.
We will call Q,, the Varshamouv-Gilbert pruned hypercube of {0,1}™.



We will not prove this Lemma in class, but a proof can be found in Duchi (2024). Now, we revisit the
normal mean estimation example to illustrate the usefulness of the Varshamov-Gilbert lemma.
Example 3. (A lower bound for normal mean estimation in R? using the VG lemma)

Consider the same normal mean estimation setting as in Example 2, and let 24 be the Varshamov-Gilbert
pruned hypercube of {0,1}¢. We use the alternatives

P = {./\f <\/§5w,021> HANS Qd} .

For these alternatives, we have the bound
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where the inequality follows from the property (ii) of the Varshamov-Gilbert pruned hypercube. Since the
maximum ¢o-distance over a hypercube is the length of a diagonal, we also have

max KL (P,, P, )= M _ @

w,w'ENq 20’2 0'2 '

Choose 6§ = a4/ di‘;gg(nz). Then,
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where the inequality follows from |P’| = |Qq| > 2%/® (property (i) of the Varshamov-Gilbert pruned hyper-
cube). Therefore, when d > 32, Corollary 1 gives us

max KL (P,, P, )=

w,w'€Nq

which proves that # is the minimax optimal rate.
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