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This lecture provides further methods to derive a lower bound for the minimax risk. In addition to
the previously introduced method using the Varshamov-Gilbert lemma, we introduce the technique of
constructing alternatives via tight packings. Finally, we will discuss nonprarametric regression and
apply the previously established ideas to find the corresponding minimax optimal rate.

1 Constructing Alternatives via Tight Packings

To construct alternatives using tight packings, we first introduce multiple definitions that will allow us a
relatively intuitive construction of alternatives contained in a parametric family.

Definition 1 (ε-Packing & ε-Packing Number).
Consider a metric space (M,ρ) and a set X ⊂ M .

• An ε-packing of X with respect to ρ is a finite subset of {xi}ni=1 ⊂ X such that every two points are
separated by a distance of at least ε, i.e., ∀i ̸= j ∈ [n] : ρ(xi, xj) ≥ ε.

• The ε-packing number of X with respect to ρ, denoted by M (ε,X , ρ) is the size of the largest ε-packing
of X with respect to ρ.

• An ε-packing of size M (ε,X , ρ) is called a maximal ε-packing of X .

It is easy to see that for an L2-ball of radius r in d-dimensional Euclidean space, X = {x ∈ Rd | ∥x∥ ≤ r},
equipped with the L2-norm, we have M

(
ε,X , ∥∥̇2

)
≥
(
r
ε

)d
. Similarly, we define ε-covering numbers that

serve as a kind of counterpart to ε-packing numbers.

Definition 2 (Covering Number, Metric Entropy).
Consider a metric space (M,ρ) and a set X ⊂ M .

• An ε-covering of set X with respect to ρ is a set {xi}ni=1 such that for all x ∈ X , there exists some
xj ∈ {xi}ni=1 s.t. ρ (x, xj) ≤ ε.

• The ε-covering number N(ε,X , ρ) is the size of the smallest ε-covering.

• The metric entropy is log (N(ε,X , ρ)).

We have the following lemma that relates covering numbers and packing numbers. This relationship is
useful since we can use existing work on both the covering number and packing number to bound the metric
entropy log (N(ε,X , ρ)) in a number of applications.

Lemma 1. A covering number N(·,X , ρ) and a packing number M(·,X , ρ) satisfy

M(2ε,X , ρ) ≤ N(ε,X , ρ) ≤ M(ε,X , ρ).
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To explore the usefulness of constructing alternatives via tight packings, we consider the example of
estimating the mean of a normal distribution with known variance in Rd.
Example 1 (Normal mean estimation in Rd).
Say we are interested in estimating the mean of a d-dimensional normal distribution with known variance σ2Id
using the squared L2 loss. In other terms, our parameter of interest is given by the expectation functional
θ (P ) = EX∼P [X] and we are using a loss that conforms to our usual structure ϕ ◦ ρ (θ1, θ2) = ∥θ1 − θ2∥22.

As the variance is assumed to be known, the space of distributions we consider as alternatives is as
follows.

P =
{
N
(
µ, σ2Id

)
|µ ∈ Rd

}
For this exact estimation problem, we previously established an upper bound to the minimax risk.

R∗
n = inf

θ̂
sup
P∈P

ES∼Pn

[
∥θ(P )− θ̂(S)∥22

]
≤ σ2 d

n

We are interested in establishing a lower bound of the same order, i.e., d/n, to establish the minimax rate
optimality of the estimator considered previously. To do so, we will employ tools based on the ideas of tight-
packings. As the minimax risk considers the supremum over all alternatives, we will first consider a reduced
set of alternatives sufficient for constructing a lower bound. To this end, let U be a maximal δ-packing of
the L2-ball of radius 2δ in Rd and define the following reduced set of alternatives.

P ′ =
{
N
(
u, σ2Id

)
|u ∈ U

}
As U is a δ-packing, we can immediately deduce the following two properties.

∀u ̸= u′ ∈ U : ∥u− u′∥ ≥ δ and N := |P ′| = |U | ≥ 2d

Furthermore, as the Kullback–Leibler divergence between two Gaussians of the form at hand has a simple
closed-form expression, we can use the following.

KL (Pu ||Pu′) =
∥u− u′∥22

2σ2

Radius: 2δ
≤ 8δ2

σ2

We want to use the local Fano method to achieve a lower bound of the desired rate. Considering the bound

given in the local Fano method, it becomes apparent that we thus require KL (Pu ||Pu′) ≤ |P′|
4n to achieve

the desired rate of convergence, as this ensures that 8δ2

σ2 ≤ d log(2)
4n . Solving for δ, we obtain δ = σ

√
d log(2)
32n ,

which, plugged into the local Fano lower bound, gives us the desired rate.

R∗ ≤

(
σ

√
d log(2)

32n

)2(
1−

N
4n + log(2)

log(N)

)
= σ2 d log(2)

32n

(
1− N

4n log(N)
− log(2)

log(N)

)
≤ log(2)

32

σ2d

n

As the lower and upper bound share the same rate of convergence, this shows rate optimality of the previously
considered estimator.
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