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In this lecture, we will develop upper and lower bounds for nonparametric regression and show that the
minimax rate is Θ̃(n−2/3). We will also briefly introduce nonparametric density estimation.

1 Nonparametric Regression

Let F be a class of bounded L-Lipschitz functions in [0, 1].

F = {f : [0, 1] → [0, 1]; |f(x1)− f(x2)| ≤ L|x1 − x2|}

It is worth mentioning that the upper bound (here 1) can be chosen arbitrarily. The same argument can be ap-
plied after employing a trivial rescaling. Assume that we observe a dataset S = {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)}
that is drawn i.i.d from an unknown distribution PXY ∈ P, where

P =
{
PXY

∣∣∣ 0 < α0 ≤ p(x) ≤ α1 <∞, f(x)
∆
= E[Y |X = x] ∈ F , Var(Y |X = x) ≤ σ2

}
,

and p(x) is the marginal density of X. We wish to estimate the nonparametric regression function using the
following loss:

ℓ(PXY , g)
∆
=

∫ 1

0

[f(x)− g(x)]2p(x)dx.

Then, the minimax risk is defined as follows:

R∗
n =inf

f̂
sup

PXY ∈P
ES∼PXY

[
ℓ(PXY , f̂)

]
=inf

f̂
sup

PXY ∈P
ES∼PXY

[∫ 1

0

(f(x)− f̂(x))2p(x)dx

]
We want to show that the minimax risk R∗

n is of the order Θ(n−2/3), establishing rate optimality of the
Nadaraya-Watson estimator that we will introduce, in two steps:

1. Establish a lower bound with Fano’s method

2. Get an upper bound by using the Nadaraya-Watson Estimation
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1.1 Lower bound

Noticing that ℓ(PXY , g) as defined above cannot be written in the form of ℓ = Φ◦ρ, meaning that we cannot
utilize the previously established results, we circumvent this problem by constructing a suitable sub-class
P ′′

of P as follows:
P

′′
= {PXY ∈ P; p(x) = 1} 1

Then R∗
n ≥ inf

f̂
sup

PXY ∈P′′
ES∼PXY

[∫
(f(x)− f̂(x))2dx

]
, and now we can write Φ ◦ ρ(f1, f2) = ∥f1 − f2∥22 .

1.1.1 Constructing alternatives

Define ψ(x) =


x+ 1

2 if x ∈ [− 1
2 , 0),

−x+ 1
2 if x ∈ [0, 12 ],

0 o.w. x
−1/2

1/2

1/2

Note that ψ is 1-Lipschitz, and
∫
ψ2(x)dx = 1/12. Now let h > 0 (we’ll specify its value later) and let m = 1

h ,
we construct a new function class

F
′
=

fω
∣∣∣∣∣∣ fω(·) =

m∑
j=1

ωjϕj(·), ω ∈ Ωm


where Ωm is the Varshamov-Gilbert pruned hypercube of {0, 1}m, and ϕj(x) = Lh · ψ

(
x−(j−1/2)h

h

)
.
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Figure 1: Depiction of ϕj and w when w = {0, 0, 1, 0, 1}.

Since

|ϕ
′

j(x)| =

∣∣∣∣∣∣∣∣Lhϕ
′
(
x− (j − 1/2)h

h

)
︸ ︷︷ ︸

1

1

h

∣∣∣∣∣∣∣∣ = L,

we know that fω is L-Lipschitz. We can now define our alternatives:

P
′
=
{
PXY

∣∣∣ p(x) uniform, f(x) = E[Y |X = x] ∈ F
′
, Y |X = x ∼ N (f(x), σ2)

}
.

As F ′ ⊂ F , we have P ′ ⊂ P ′′ ⊂ P.

1.1.2 Lower bound on separation of alternatives, ∥fω − fω′∥

To better organize our result, we first calculate,∫ j
m

j−1
m

ϕ2j (x)dx =

∫ j
m

j−1
m

L2h2 · ψ2

(
x− (j − 1/2)h

h

)
dx =

∫ 1/2

−1/2

L2h3ψ2(u)du =
L2h3

12
.

1here we use the uniform density p(x) = 1 for convenience, but any fixed density p(x) will still induce a metric.
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We then have, ∀ω, ω′ ∈ Ωm,

ρ2(fω, fω′) =

∫ 1

0

(fω − fω′)2dx

=

m∑
j=1

∫ j
m

j−1
m

(ωjϕj(x)− ω′
jϕj(x))

2dx

=

m∑
j=1

1{ωj ̸= ω′
j}
∫ j

m

j−1
m

ϕ2j (x)dx

=
L2h3

12

m∑
j=1

1{ωj ̸= ω′
j} =

L2h3

12
·H(ωj , ω

′
j)

where H(·, ·) is the Hamming distance, and the last equation holds because of the definition of it.
Since ω, ω′ ∈ Ωm, by Varshamov-Gilbert lemma, H(ωj , ω

′
j) ≥ m

8 = 1
8h . Then we have

min
ωj ,ω′

j

ρ(fω, fω′) ≥
√
L2h3

12

√
H(ω, ω′) =

Lh√
96

∆
= δ,

where δ is called the separation between hypotheses.

1.1.3 Upper bound KL

Next, we will upper bound the maximum KL divergence between our alternatives. Let Pω, Pω′ ∈ P ′. Then,

KL(Pω, Pω′) =

∫
X×Y

pω log
pω
pω′

=

∫ 1

0

∫ ∞

−∞
pω(x)pω(y|x) log

pω(x)pω(y|x)
pω′(x)pω′(y|x)

dydx

=

∫ 1

0

∫ ∞

−∞
pω(y|x) log

pω(y|x)
pω′(y|x)

dydx (as pω(x) = pω′(x) = 1)

=

∫ 1

0

KL
(
N (fω(x), σ

2),N (fω′(x), σ2)
)
dx (as Y |X = x ∼ N (f(x), σ2))

=
1

2σ2

∫ 1

0

(fω(x)− fω′(x))
2
dx

=
1

2σ2
ρ2(fω, fω′) =

L2h3 ·H(ω, ω′)

24σ2
.

Then since max
ω,ω′

H(ω, ω′) ≤ m = 1/h,

max
ω,ω′

KL(Pω, Pω′) =
L2h3

24σ2
max
ω,ω′

H(ω, ω′) ≤ L2h2

24σ2
.

1.1.4 Apply local Fano’s method

In order to apply Fano’s method, we need to satisfy max
ω,ω′

KL(Pω, Pω′) ≤ log |P′|
4n . Recall that by the

Varshamov-Gilbert lemma, |P ′| ≥ 2m/8. Thus, it is sufficient if we have,

L2h2

24σ2
≤ log(2m/8)

4n
=
m log 2

32n
=

log 2

32nh
.
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This suggests that we could choose h =
(

3 log 2
4

) 1
3 σ2/3

n1/3L2/3 . Thus the separation between hypotheses δ =

C1
L1/3σ2/3

n1/3 , where C1 is some constant. By the local Fano’s method, we obtain the following.

R∗
n ≥ 1

2
Φ

(
δ

2

)
=

1

8
δ2 = C2

L2/3σ4/3

n2/3
.

Remark: To apply the local Fano’s method, it’s required that |P ′| ≥ 16. It’s sufficient to have |P ′| ≥
2m/8 ≥ 16, i.e. m = 1/h ≥ 32, which means the following must hold:

h =

(
3 log 2

4

) 1
3 σ2/3

n1/3L2/3
≤ 1

32
=⇒ n ≥ C3

σ2

L2
for some constant C3.

1.2 Upper Bound

To upper-bound the minimax risk, we introduce a specific estimator and establish its risk. Later, we will
introduce the class of Nadaraya-Watson estimators and show that our current estimator is a special case of
it. Our estimator f̂(t) is defined as follows, where h is a bandwidth parameter.

f̂(t) =

{
clip

(
1

N(t)

∑n
i=1 Yi1{Xi ∈ [t− h, t+ h]}, 0, 1

)
if N(t) > 0

1/2 if N(t) = 0

where N(t) =
∑n

i=1 1{Xi ∈ [t− h, t+ h]} and clip(x, 0, 1) means that

clip(x, 0, 1) =


x, 0 ⩽ x ⩽ 1

0, x < 0

1, x > 1.

By definition,

R(PXY , f̂) = ES

[∫
(f̂(x)− f(x))2p(x)dx

]
⩽ α1ES

[∫
(f̂(x)− f(x))2dx

]
= α1

∫ 1

0

ES

[
(f̂(t)− f(t))2

]
︸ ︷︷ ︸

err(t)

dt.

We will next provide a pointwise bound on err(t) which will translate to an integrated bound. The calculations
for the pointwise bound are very similar to an example we saw previously so we will only provide an overview
and highlight the differences. Let Gt = {N(t) ⩾ α0nh} denote the good event that there were a sufficient
number of samples in a 2h neighborhood of t. We have,

P(Gc
t) = P

(
n∑

i=1

1{Xi ∈ [t− h, t+ h]} < α0nh

)

= P

(
n∑

i=1

(1{Xi ∈ [t− h, t+ h]} − P([t− h, t+ h])) < α0nh− nP([t− h, t+ h])

)
,

where P([t−h, t+h]) =
∫ t+h

t−h
p(x)dx ⩾ 2α0h. Thus we have α0nh−nP([t−h, t+h]) ⩽ −α0nh. By Hoeffding’s

inequality, it follows that P(Gc) ⩽ exp(−2α2
0nh

2). We can decompose err(t) as

err(t) = ES

[
(f̂(t)− f(t))2 | Gt

]
· P (Gt) + ES

[
(f̂(t)− f(t))2 | Gc

t

]
· P (Gc

t)

By following the calculations from our previous example, we can show

ES

[
(f̂(t)− f(t))2

]
⩽ L2h2 +

σ2

nh
+ e−2α2

0nh
2

.
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Therefore,

R(PXY , f̂) ⩽ α1

∫ 1

0

ES

[
(f̂(t)− f(t))2

]
dt ⩽ α1

(
L2h2 +

σ2

nh
+ e−2α2

0nh
2

)
.

Now we choose h = σ2/3L−2/3n−1/3, which implies that

R(PXY , f̂) ⩽ 2α1
σ4/3L2/3

n2/3
+ α1 exp

(
−2α2

0

σ4/3n1/3

L4/3

)
.

This shows that the estimator under consideration achieves the same convergence rate as our lower bound
when using appropriately chosen parameters. Therefore the minimax risk is of order R∗ = Θ(n−2/3).

Remark: Had we used the multiplication Chernoff bound instead of Hoeffding’s inequality, we would
have found the following bounds:

P(Gc) ⩽ e−α0nh/8,

R(PXY , f̂) ⩽ 2α1
σ4/3L2/3

n2/3
+ α1 exp

(
−α0

4

σ2/3n2/3

L2/3

)
.

For i.i.d Bernoulli random variables with success probability close to 0 or 1, the multiplicative Chernoff bound
can provide a tighter bound than Hoeffding’s inequality. This does not significantly alter our conclusions in
this example but may be significant in other use cases.

1.3 Nadaraya-Watson Estimator

A Nadaraya-Watson Estimator (also known as the kernel estimator) is defined to be

f̂(t) =

n∑
i=1

yiwi(t)

wi(t) =

{
K((t−Xi)/h)∑n

j=1 K((t−Xj)/h)
if
∑n

j=1K((t−Xj)/h) > 0

0 otherwise
,

where K : R → R is called a smoothing kernel. For example, in our previous case, the smoothing kernel
is K(u) = 1{|u| ⩽ 1}, which is sufficient for Lipschitz smooth functions. Other kernel choices can lead to
better rates under stronger smoothness assumptions. One such class of assumptions is that the regression
function falls into a Hölder class in Rd, which is denoted by H(β, L) and defined to be the set of all functions
whose (β − 1)th order partial derivatives are L-Lipschitz. The minimax rate in this class is Θ(n−2β/(2β+d)).
To achieve this rate, we will need to design smarter kernels in the Nadaraya-Watson estimator. The same
rates hold for density estimation in the Hölder class.

2 Density Estimation

We will briefly introduce lower and upper bounds for density estimation. Let F be the class of bounded
Lipschitz functions, i.e.

F = {f : [0, 1] → [0, B] : |f(x1)− f(x2)| ⩽ L|x1 − x2| ∀x1, x2 ∈ [0, 1]}.

Here, we choose B as the upper bound instead of 1 to allow for nontrivial functions that fulfill the integral
constraint imposed by the fact that the functions of interest are densities. The corresponding nonparametric
family of alterantives is then defined to be

P = {P : The p.d.f. p of P is in F}.
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Suppose we observe S = (X1, . . . , Xn) drawn i.i.d from some distribution P ∈ P. We wish to estimate the
p.d.f. under the L2 loss, i.e.

Φ ◦ ρ(P1, P2) =

∫
(p1(t)− p2(t))

2dt.

By definition, the minimax risk is

R∗
n = inf

p̂
sup
p∈F

ES

[
||p̂(S)− p||22

]
.

2.1 Lower bound

We will first prove a lower bound via Fano’s method.
Step 1: Construct alternatives

1
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1
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1
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1
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4

Figure 2: Illustrative figure for the function ψ(λ).

Consider the function ψ illustrated in Figure 2. The following facts are straightforward to verify.

• ψ is 1-Lipschitz, meaning that for any two inputs λ1 and λ2: |ψ(λ1)− ψ(λ2)| ≤ |λ1 − λ2|;

•
∫
ψ = 0, which indicates that the area under the curve of the function, over its entire domain, sums

up to zero;

• − 1
4 ≤ ψ ≤ 1

4 , which gives the range of the function;

•
∫
ψ2 = 1

48 , which the squared integral of ψ.

To construct the alternatives, let h be a positive number (h > 0) that we will decide later. Let m = 1
n . The

alternative function space F ′
is:

F
′
=

{
Pω : Pω(·) = 1 +

m∑
i=1

ωjΦj(·); ω ∈ Ωm

}
.

This space defines a set of functions Pω formed by a linear combination of basis function ϕj(t). The vector
ω is an element of the V G pruned hypercube Ωm. The basis function is defined as:

ϕj(t) = Lhψ

(
t− (j − 1

2 ) · h
h

)
,

where L denotes the Lipschitz constant, and h is the bandwidth. Figure 3 provides a visual representation
of one such alternative. We can check that Pω is L-Lipschitz and Pω is a valid density function because∫
Pω = 1. We need 0 ≤ Pω ≤ B, this is satisfied if h ≤ 4

L min(B − 1, 1).

Step 2: Lower bound the minimum distance ρ(pω, pω′)
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Figure 3: Illustrative figure for the example pω.

The objective of this step is to determine a lower bound for the difference between pω and pω′ . We can
bound the difference from below in the following way: ∀ω, ω′ ∈ Ωm,

ρ2(pω, pω′ ) =

∫ 1

0

(pω(t)− pω′ (t))2 dt =

m∑
j=1

∫ j
m

j−1
m

(1 + ωjϕj(t)− (1 + ω
′

jϕj(t)))
2 dt

=

m∑
j=1

I(ωj ̸= ω
′

j)

∫ j
m

j−1
m

ϕ2j (t) dt =
H(ω, ω

′
)L2h3

48

By the Varshamov-Gilbert lemma, we have H(ω, ω
′
) ≥ m

8 = 1
8h , allowing us to find the following.

min
ω,ω′

||pω − pω′ || =
√
L2h3

48
·min
ω,ω′

√
H(ω, ω′) ≥ Lh

8
√
6
≜ δ.

Step 3: Upper bound the maximum KL divergence
In this step, the goal is to determine an upper bound for the Kullback-Leibler (KL) divergence between two
functions, pω and pω′ . Based on the definition of KL divergence and expanding KL for pω and pω′ :

KL(pω, pω′ ) =

∫ 1

0

pω(t) log

(
pω(t)

pω′ (t)

)
dt

=

m∑
j=1

1(ωj ̸= ω
′

j)

∫ j
m

j−1
m

(1 + ωjϕj(t)) log

(
1 + ωjϕj(t)

1 + ω
′
jϕj(t)

)
dt

After some algebra (you will do this in the homework), we have the following upper bound:

∀ω, ω
′
,KL(pω, pω′ ) ≤ H(ω, ω

′
)
L2h3

48
⇒ max

ω,ω′
KL(pω, pω′ ) ≤ L2h2

48

because H(ω, ω′) ≤ m = 1
h A formal proof of this statement is left as an exercise in a homework assignment.

Step 4: Apply local Fano
Applying local Fano’s inequality in this step, we derive conditions and constraints for the estimation problem.

We want maxω,ω′ KL(pω, pω′ ) ≤ log(ω)
4n . This serves to upper bound the maximum KL divergence between

any two functions in the set by a term that diminishes with increasing sample size n. It is sufficient if we

have L2h2

48 ≤ log(2
m
8 )

4n = log(2)
32nh . Thus, choose h = C 1

n1/3L2/3 , which determines the choice of h as a function
of n and L. Then, we have the following:

R∗
n ≥ 1

2
Φ(

Lh

2× 8
√
6
) = C

L2/3

n2/3
.
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This offers a lower bound on the risk, R∗
n, quantifying the estimation error. The following requirements

ensure the validity and applicability of the above derivations.

• m = 1
h ≥ 8. This is necessary for the Varshamov-Gilbert lemma to be applicable.

• Cardinality of F ′
: |F ′ | ≥ 16 ⇐ 2

m
8 ≥ 16 ⇐ h ≤ 1

32 ⇒ satisfied if n ≥ c
L2 . This ensures a sufficient

number of observations given the Lipschitz constant L.

• KL bounding condition: h ≤ 2.72
L . This imposes that the KL divergence between functions remains

bounded and ties the bandwidth h to the Lipschitz constant L.

2.2 Upper Bound via Kernel Density Estimation

Kernel Density Estimation (KDE) is a nonparametric technique to estimate the probability density function
of a continuous random variable. The Kernel Density Estimator (KDE) has the following form:

p̂(t) =
1

n

n∑
i=1

1

h
K

(
t− xi
h

)
,

where p̂(t) is the estimated density at point t, n is the number of data points, and xi are the observed
data points. h is a bandwidth parameter chosen by the researcher that plays a critical role in KDE. K is a
(smoothing) kernel with the following properties:

1. Normalization: ∫
K(u)du = 1,

This ensures the result will integrate to 1 over its entire domain, maintaining the fundamental property
of a probability density function.

2. Symmetry:
K(u) = K(−u),

This property ensures that the kernel is symmetric around zero.
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