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In this lecture, we will continue our discussion on classification in a VC Class, and introduce the stochastic
bandits and Upper Confidence Bound Algorithm.

1 Classification in a VC Class (Cont’d)

We now use the above results to derive a lower bound for classification in a VC class.

Theorem 1. Let P be the set of all distributions supported on X × {0, 1}. Let H ⊆ {h : X → Y} be a
hypothesis class with VC dimension d ⩾ 8. Let S = {(X1, Y1), . . . , (Xn, Yn)} ∼iid P , where P ∈ P. Then,

for any estimator ĥ that maps the dataset S to a hypothesis in H,

R∗ = inf
ĥ

sup
P∈P

(
E[F (ĥ, P )]− inf

h′∈H
F (h′, P )

)
⩾ C1

√
d

n

for some global constant C1.

Proof Our proof follows the standard four-step recipe when applying the Fano/Le Cam methods.
Step 1: Construct alternatives.
Let Xd = {x1, . . . , xd} be a set of points shattered by H. Let γ ⩽ 1/4 be a value to be specified later.

Define

P ′ =

{
Pω : Pω(X = x) =

1

d
1{x ∈ Xd}, Pω(Y = 1 | X = xi) =

1

2
+ (2ωi − 1)γ, ω ∈ Ωd

}
,

where Ωd is the VG-pruned hypercube of {0, 1}d.
Remark To illustrate the above construction, consider the class of two-sided threshold classifiers with
d = 2, i.e., X2 = {x1, x2} ⊆ R. Let Pω be the distribution for ω = (0, 1) with Pω(X = x1) = Pω(X = x2) =
1/2. Then the conditional distribution of Y is:

Pω(Y = 1 | X = x1) =
1

2
− γ, Pω(Y = 1 | X = x2) =

1

2
+ γ.

Step 2: Lower bound the separation minω,ω′ ∆(Pω, Pω′).
We claim that for any Pω, Pω′ ∈ P ′, the separation satisfies

∆(Pω, Pω′) ⩾
γ

d
H(ω, ω′).

We will prove this claim in the homework. Then, by the Varshamov-Gilbert lemma, we have

min
ω,ω′

∆(Pω, Pω′) ⩾
γ

d
· d
8
=

γ

8
≜ δ.
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Step 3: Upper bound the KL divergence maxω,ω′ KL(Pω, Pω′).
We calculate the KL divergence as follows:

KL(Pω, Pω′) = EX,Y

[
log

Pω(X,Y )

Pω′(X,Y )

]
=

d∑
i=1

Pω(xi)
∑

y∈{0,1}

Pω(y | xi) log
Pω(y | xi)

Pω′(y | xi)
(since Pω(x) = Pω′(x))

=

d∑
i=1

1

d
1{ω ̸= ω′}

[
(
1

2
+ γ) log

1
2 + γ
1
2 − γ

+ (
1

2
− γ) log

1
2 − γ
1
2 + γ

]
︸ ︷︷ ︸

=O(γ2)

⩽ C2
γ2

d
H(ω, ω′).

Therefore, with H(ω, ω′) ⩽ d, we obtain:

max
ω,ω′

KL(Pω, Pω′) ⩽ C2γ
2.

Step 4: Conclusion.

To conclude the proof, we set γ = C3

√
d
n . Then we have:

max
ω,ω′

KL(Pω, Pω′) ⩽ C4
d

n
⩽

log(2d/8)

4n
⩽

log(|P ′|)
4n

,

where the last inequality follows from the Varshamov-Gilbert lemma. Then, by the local Fano method, we
conclude:

R∗ ⩾
δ

2
⩾ C5

√
d

n
.

2 Stochastic Bandits

2.1 Introduction

In the next series of lectures, we will discuss sequential/adaptive decision-making problems, where there is
a sequence of interactions between a learner and an environment.

Specifically, at each round t, the learner chooses an action At ∈ A, where A is the set of possible actions.
The environment then reveals an observationOt, and in return, the learner receives a rewardXt = Xt(Ot, At).

The learner’s objective is to maximize the sum of rewards
∑T

t=1 Xt. Stochastic/adversarial bandits and online
learning are typical examples of sequential/adaptive decision-making problems. We will begin by focusing
on stochastic bandits.

A stochastic bandit problem consists of the following components:

• Let ν = {νa, a ∈ A} denote a set of distributions indexed by actions in A. This set ν is referred to as
a bandit model and is a subset of some family P.

• At each round t, the learner selects an action At ∈ A and observes a reward Xt sampled from νAt
.

• The learner follows a policy Π = (Πt)t∈N, where Πt maps the history {(As, Xs)}t−1
s=1 to an action in A.
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• If Π is a randomized policy, Πt maps the history to a probability distribution over A, and an action is
then sampled from this distribution. Π can also be a deterministic policy.

• The expected reward of action a is defined as µa = EX∼νa
[X]. Let a∗ ∈ argmaxa∈A µa be the optimal

action, and let µ∗ = µa∗ represent the corresponding optimal expected reward.

• The regret after T rounds of interaction is defined as

RT = RT (Π, ν) = Tµ∗ − E

[
T∑

t=1

Xt

]
,

where E is taken with respect to the distribution of the action-reward sequence (A1, X1, A2, X2, . . . , AT , XT )
induced by the interaction between the policy Π and the bandit model ν. The quantities µa, a

∗, and µ∗
are functions of the bandit model ν, and can also be written as µa(ν), a

∗(ν), and µ∗(ν), respectively.

When designing an algorithm for bandits, we require at a minimum that RT ∈ O(T ), i.e., limT→∞
RT

T = 0.
This condition implies that, over time, the learner is able to eventually identify and learn the optimal action
(arm).

2.2 K-armed bandits

A K-armed bandit is a stochastic bandit model where the action space consists of K distinct actions, denoted
by A = [K].

• Stochastic Bandits: In this setting, the action space is finite, denoted by A = [K], where K
represents the number of distinct actions (arms).

• Sub-Gaussian Assumption: We assume each reward distribution νi associated with arm i is σ-sub-
Gaussian, with the variance parameter σ known. Formally, the set of possible bandit models is given
by:

P = {ν = {νi | i ∈ [K]} | νi is σ-sub-Gaussian for all i ∈ [K]} .

• Ordering of Expected Rewards: Without loss of generality, we assume that the expected rewards
are ordered as follows:

1 ≥ µ1 ≥ µ2 ≥ · · · ≥ µK ≥ 0,

where µi = EX∼νi
[X] represents the expected reward for action i. It is important to note that the

learner does not know this ordering.

• Regret Definition: Let ∆i = µ1 − µi represent the gap between the optimal arm (arm 1) and arm
i. This quantity indicates how much worse the reward from arm i is compared to the optimal arm.

3 Explore-then-Commit

We have stated this algorithm formal in Algorithm 1.
Let P be the class of σ-sub-Gaussian K-armed bandit models. For all ν ∈ P, the regret of the ETC

algorithm πETC
m satisfies:

RT (π
ETC
m , ν) ≤ m

∑
i,∆i>0

∆i + (T −mK)
∑

i,∆i>0

∆i exp

(
−m∆2

i

4σ2

)
.

If we choose m = K−1/3T 1/3, then

sup
ν∈P

RT

(
πETC
K−1/3T 1/3 , ν

)
∈ Õ

(
K1/3T 2/3

)
.
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Algorithm 1 Explore-then-Commit Algorithm

Data: time horizon T , number of exploration rewards m (≤ T/K)
- Exploration phase: Pull each arm m times in the first mK rounds.
- Let

A = argmax
T∈[K]

µ̂i, where µ̂i =
1

m

mK∑
s=1

1(As = i)xs

- Commit phase: Pull arm A for the remaining T −mK rounds

The regret cannot be improved (via tighter analysis and/or better choice of m), and we have

inf
m∈[T ]

sup
ν∈P

RT (π
ETC
m , ν) ∈ Ω

(
K1/3T 2/3

)
.

4 The Upper Confidence Bound (UCB) Algorithm

The UCB algorithm is based on the principle of optimism in the face of uncertainty, where, in each round,
we act as though the bandit model is as favorable as is statistically plausible. To state the algorithm formally,
we first define the upper confidence bounds for each arm at the end of round t as follows:

Ni,t =

t∑
s=1

1(As = i),

µ̂i,t =
1

Ni,t

t∑
s=1

1(As = i)Xs (undefined if Ni,t = 0),

ei,t = σ

√
2 log(1/δt)

Ni,t
where δt =

1

T 2t
(undefined if Ni,t = 0).

Thus, µ̂i,t + ei,t is an upper confidence bound for µi, and µ̂i,t − ei,t is a lower confidence bound for µi.
The UCB algorithm works by choosing the arm with the highest upper confidence bound µ̂i,t−1 + ei,t−1

at each round. Intuitively, maximizing µ̂i,t−1 + ei,t−1 balances exploitation (through µ̂i,t−1) and exploration
(through ei,t−1). The formal statement of the UCB algorithm is given below in Algorithm 2.

Algorithm 2 The Upper Confidence Bound Algorithm

Data: time horizon T , number of exploration rounds m(≤ T/K)
for t = 1, . . . ,K do
Pull arm t, i.e., set At = t and observe Xt ∼ νt

end
for t = K + 1, . . . , T do

Pull At = argmaxi∈[K] µ̂i,t−1 + ei,t−1 and observe Xt ∼ νAt
▷ break ties arbitrarily

end

4.1 Theoretical Results

Theorem 2. Let P denote the class of σ-sub-Gaussian bandit models, and let ν ∈ P. Then the UCB policy
satisfies:

RT (ν) ≤ 3K +
∑

i:∆i>0

24σ2 log(T )

∆i
.
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Moreover, we have the gap-independent bound:

sup
ν∈P

RT (ν) ≤ 3K + σ
√
96KT log(T ) ∈ Õ

(√
KT

)
.

The first bound is a gap-dependent bound, whereas the second is a gap-independent bound or a worst-case
bound. If the gaps ∆i = µ1 − µi are large, then RT ∈ O(log(T )); otherwise, RT ∈ Õ(

√
KT ).

4.2 Regret Decomposition

Before proving Theorem 2, we first state the following regret decomposition lemma.

Lemma 1 (Regret decomposition). This applies to any policy, not just UCB:

RT (ν) =
∑

i:∆i>0

∆iE[Ni,T ],

where the expectation E is taken with respect to the action-reward sequence (A1, X1, A2, X2, . . . , AT , XT ).

Proof

RT =

T∑
t=1

(µ1 − E[Xt])

=

T∑
t=1

(
µ1 − E

[
K∑
i=1

1(At = i)Xt

])

=

T∑
t=1

K∑
i=1

E [(µ1 −Xt)1(At = i)]

=

K∑
i=1

T∑
t=1

E [1(At = i)E[(µ1 −Xt) | At]]

=

K∑
i=1

T∑
t=1

E [1(At = i)(µ1 − µi)]

=

K∑
i=1

T∑
t=1

E [1(At = i)∆i]

=

K∑
i=1

∆iE

[
T∑

t=1

1(At = i)

]

=

K∑
i=1

∆iE[Ni,T ].

4.3 Proof of Theorem 2

We assume without loss of generality (w.l.o.g.) that each arm samples rewards {yi,r}r∈N, and we observe
these samples one-by-one as we pull each arm. Hence, we can write:

µ̂i,t =
1

Ni,t

Ni,t∑
r=1

yi,r.
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We now define the following ”good” events G1 and Gi (for all i such that ∆i > 0):

G1 = {∀t > K, µ1 < µ̂1,t + e1,t} ,

Gi = {∀t > K, µi > µ̂i,t − ei,t} .

Here, G1 indicates that the true mean is below the UCB, and Gi indicates that the true mean is above the
LCB.

Claim 1. We have P(Gc
1) ≤ 1

T , and P(Gc
i ) ≤ 1

T .

Proof

P(Gc
1) = P (∃t > K such that µ1 ≥ µ̂1,t + e1,t)

≤
∑
t>K

P (µ1 > µ̂1,t + e1,t)

=
∑
t>K

P

µ1 >
1

N1,t

N1,t∑
r=1

y1,r + σ

√
2 log(1/δt)

N1,t


≤
∑
t>K

t−K+1∑
s=1

P

(
1

s

s∑
r=1

(y1,r − µ1) < −σ

√
2 log(1/δt)

s

)

≤
∑
t>K

t−K+1∑
s=1

exp

(
− s

2σ2
· σ2 · 2 log(1/δt)

s

)

=
∑
t>K

t−K+1∑
s=1

1

T 2t
(since δt =

1

T 2t
)

≤
∑
t>K

1

T 2
≤ 1

T
.

Remark The trick we used in the fourth and fifth steps only works in K-armed bandits. For other bandit
models, we typically use martingales.
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