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In this lecture, we will first upper bound the regret for UCB, providing gap-dependent and worst-case
bounds. We will then start our discussion on proving lower bounds for K–armed bandits.

1 UCB Theorem and Proof

We will now present the theorem for the risk upper bounds for the UCB theorem once again, and pick up
the proof where we left off.

Theorem 1 (UCB Risk Upper Bound). Let P =
{
ν = {νi}Ki=1 : νi σ-sG, EX∼νi [X] ∈ [0, 1] ∀ i ∈ [K]

}
be the

class of σ-sub-Gaussian K-armed bandit models with means in [0, 1]. Let µi := EX∼νi
[X], µ∗ := maxi∈[K] µi,

and denote ∆i := µ∗ − µi. Then

RT (ν) ≤ 3K +
∑

i:∆i>0

24σ2 log(T )

∆i
(1)

sup
ν∈P

RT (ν) ≤ 3K + σ
√
96KT log(T ) (2)

Proof Proof of Theorem 1 will assume w.l.o.g that each arm samples rewards yi,rr∈N and we observe these

samples one-by-one as we pull each arm. Therefore, we can write µ̂i,t =
1

Ni,t

∑Ni,t

r=1 yi,r.

Recall the definition of good events, G1, Gi: for ∀i s.t. ∆i > 0.

G1 ≜ {∀t > K, µ1 < µ̂1,t + e1,t}

Gi ≜ {∀t > K, µi > µ̂i,t − ei,t}

where G1 indicates that the true mean is below the UCB, and Gi indicates that the true mean is above the
LCB.

Claim 1. We have, P(Gc
1) ≤ 1

T , and P(Gc
i ) ≤ 1

T

P(Gc
1) = P (∃t > K, s.t. µ1 ≥ µ̂1,t + e1,t)

≤
∑
t>K

P (µ1 > µ̂1,t + e1,t)

=
∑
t>K

P

µ1 >
1

N1,t

N1,t∑
r=1

y1,r + σ

√
2 log(1/δt)

N1,t
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≤
∑
t>K

P

(
∃s ∈ [t−K + 1] s.t. µ1 >

1

s

s∑
r=1

y1,r + σ

√
2 log(1/δt)

s

)

≤
∑
t>K

t−K+1∑
s=1

P

(
1

s

s∑
r=1

(y1,r − µ1) < −σ
√

2 log(1/δt)

s

)

≤
∑
t>K

t−K+1∑
s=1

exp

(
− s

2σ2
· σ2 · 2 log(1/δt)

s

)

=
∑
t>K

t−K+1∑
s=1

1

T 2t
as δt =

1

T 2t

≤
∑
t>K

1

T 2
≤ 1

T

Remark The trick we used in the fourth and fifth steps only works in K–armed bandits. For other bandit
models, we usually use martingales.

We will now show that Ni,t :=
∑t

s=1 I{As=i} is small for sub-optimal arms (∆i > 0) under the event
G1 ∩Gi. To show this, suppose arm i was last pulled on round t+ 1, where t ≥ K. Hence,

µ̂i,t + ei,t ≥ max
j ̸=i

(
µ̂j,t + ej,t

)
← UCB Alg. construction

≥ µ̂1,t + e1,t

> µ1 (under G1),

and under Gi, we also have µi > µ̂i,t − ei,t. Therefore,

µ1 < µi + 2ei,t ⇒
∆i

2
< ei,t = σ

√
2 log(T 2t)

Ni,t

⇒ Ni,t <
8σ2 log(T 3)

∆2
i

← T > t

⇒ Ni,T = Ni,t + 1 ≤ 24σ2 log(T )

∆2
i

+ 1

Now, combining these results, we can write,

E[Ni,t] = E[Ni,t|G1 ∩Gi]︸ ︷︷ ︸
≤ 24σ2 log(T )

∆2
i

+1

P(G1 ∩Gi)︸ ︷︷ ︸
≤1

+E[Ni,t|Gc
1 ∪Gc

i ]︸ ︷︷ ︸
≤T

P(Gc
1 ∪Gc

i )︸ ︷︷ ︸
≤ 2

T

≤ 3 +
24σ2 log(T )

∆2
i

Then, by the regret decomposition result shown towards the end of last class, we can write,

RT (ν) ≤
∑

i:∆i>0

∆i E[Ni,t] ≤ 3K +
∑

i:∆i>0

24σ2 log(T )

∆i
,

where we leverage the fact that ∆i ∈ [0, 1] and there are at most K − 1 summands. This proves the gap-
dependent bound in (1). For the gap-independent bound, we can choose some value ∆ > 0 and rewrite our
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result above as thus:

RT (ν) =
∑

i:∆i>0

∆i E[Ni,t]

=
∑

i:∆i∈(0,∆]

∆i E[Ni,t] +
∑

i:∆i>∆

∆i E[Ni,t]

≤ ∆
∑

i:∆i∈(0,∆]

E[Ni,t]︸ ︷︷ ︸
≤T

+
∑

i:∆i>∆

24σ2 log(T )

∆
+ 3K

≤ 3K +∆T +
24σ2 log(T )

∆

Then, because this holds for all ∆ > 0, we are free to optimize over values of ∆, giving us in particular

∆ = σ
√

24K log(T )
T . Therefore,

RT (ν) ≤ 3K + σ
√

96KT log(T ) ,

and because this result holds for all ν ∈ P, and the bound has no dependence on ν, then we can write,

sup
ν∈P

RT (ν) ≤ 3K + σ
√
96KT log(T ) ,

which is exactly the statement in (2).

Next, we will present an alternative proof of the gap-independent bound. These techniques apply beyond
K-armed bandits; we will use these techniques for linear bandits in subsequent classes.

1.1 Alternative Proof for the Gap-Independent Bound

We will first decompose the regret as follows:

RT = Tµ1 − E

[
T∑

t=1

Xt

]
(3)

= E

[
T∑

t=1

(µ1 −Xt)

]

= E

[
T∑

t=1

E [µ1 −Xt | At]

]

= E

[
T∑

t=1

(µ1 − µAt
)

]

where E
[∑T

t=1 (µ1 − µAt
)
]
is usually called the pseudo-regret.

Next, we define the good event, G =
K⋂
i=1

Gi, where

G1 = {∀t > K, µ1 < µ̂1,t + e1,t}, Gi = {∀t > K, µi > µ̂i,t + ei,t}.

Note that above, ∀T, P(Gc
i ) ≤ 1

T .
Now, we rewrite RT as follows
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RT = E

[
T∑

t=1

µ1 − µAt

]
= E

[
T∑

t=1

(µ1 − µAt
) | G

]
· P(G)︸ ︷︷ ︸

≤1

+E

[
T∑

t=1

(µ1 − µAt
) | Gc

]
︸ ︷︷ ︸

≤T

·P(Gc)︸ ︷︷ ︸
≤K

T

(4)

We will bound
∑T

t=1(µ1 − µAt) under G.
Claim: Under the event G, ∀t > K,

µ1 − µAt
≤ 2eAt,t−1 = 2σ

√
2 log(T 2(t− 1))

NAt,t−1

.
Proof

µ1 ≤︸︷︷︸
under G

µ̂1,t−1 + e1,t−1 ≤︸︷︷︸
At was chosen on round t

µ̂At,t−1 + eAt,t−1 ≤︸︷︷︸
under G

µAt
+ 2eAt,t−1.

Therefore,

µ1 − µAt
≤ 2eAt,t−1 = 2σ

√
2 log(T 2(t− 1))

NAt,t−1
.

So, under G,

T∑
t=1

(µ1 − µAt) =

K∑
t=1

(µ1 − µAt)︸ ︷︷ ︸
K

+

T∑
t=K+1

(µ1 − µAt)︸ ︷︷ ︸
≤

T∑
t=K+1

2σ

√
2 log(T3)
NAt,t−1

≤ K + σ
√

24 log(T )

T∑
t=K+1

1√
NAt,t−1︸ ︷︷ ︸

(*)

m

We proceed to bound (*) above
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(*) =

T∑
t=K+1

1√
NAt,t−1

=

K∑
i=1

Ni,T−1∑
s=1

1√
s

(
m∑
s=1

1√
S
≤ 2
√
m,Proof below

)

≤ 2

K∑
i=1

√
Ni,T − 1

= 2K

(
1

K

K∑
i=1

√
Ni,T − 1

)

≤ 2K

√√√√√√ 1

K

K∑
i=1

(Ni,T−1)︸ ︷︷ ︸
=T

(Jensen’s Inequality)

= 2
√
KT

Here the first inequality follows from
∑m

s=1
1√
s
≤ 2
√
m, which we have proved below.

Putting everything together,
Under G,

T∑
t=1

µ1 − µAt
≤ K + σ

√
24 log(T )

T∑
t=K+1

1√
NAt,t−1︸ ︷︷ ︸

(*)≤
√
2KT

≤ K + σ
√
96KT log(T ).

Therefore,

RT = E

[
T∑

t=1

µ1 − µAt
|G

]
· P(G)︸ ︷︷ ︸

≤1

+E

[
T∑

t=1

µ1 − µAt
|Gc

]
︸ ︷︷ ︸

≤T

·P(Gc)︸ ︷︷ ︸
≤K/T

≤ 2K +
√
96KT log(T ).

To prove
∑m

s=1
1√
s
≤ 2
√
m, we will bound the sum of a decreasing function by an integral as follows:∑m

s=1
1√
s
≤
∫m

0
1√
s
ds = (2s1/2)

∣∣m
0

= 2
√
m.

2 K-armed bandits lower bound.

In this section, we will prove the following lower bound on the minimax regret:

inf
π

sup
ν∈P

RT (π, ν) ∈ Ω(?)

.
For the UCB policy,

RT (π
UCB, ν) ∈ Õ(

√
KT ), ∀ν ∈ P,
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where P is the set of σ−sub-Gaussian distributions.
We will prove a minimax lower bound of the above form through reduction to (binary) testing, i.e., we

will do so by considering two alternatives and showing that no policy can simultaneously achieve small regret
on both alternatives.

inf
π

sup
ν∈P

RT (π, ν) ≥ inf
π

sup
ν∈{ν1,ν2}

RT (π, ν) ≥
1

2
(RT (π, ν1) +RT (π, ν2)),

where the first inequality follows from the fact that the middle term is subset of the left term and the second
inequality follows from the fact the max ≥ average.

To do so, recall the Bretagnolle-Huber inequality used in the proof of Le Cam’s method.

Lemma 1. Let P0, P1 be two distributions and A be any event. For any test ψ mapping the data to {0,1},

P0(ψ ̸= 0) + P1(ψ ̸= 1) ≥︸︷︷︸
NP−test

||P0 ∧ P1|| ≥︸︷︷︸
by a propoerty we proved in class

1

2
e−KL(P0,P1).

We can write this as ∀ events A,P0(A) + P1(A
c) ≥ 1

2e
−KL(P0,P1)

When applying this inequality, the KL divergence will be between distributions of action-reward sequences
A1, X1, · · · , AT , XT induced by the interaction of a policy π with different bandit models, which is not
straightforward to compute. The following lemma will be helpful in computing the KL divergence.

Lemma 2 (KL divergence decomposition). Let ν, ν′ be two K-armed bandits models. For a given (possibly
randomized) policy π, let P , P ′ denote the probability distribution over the sequence of actions and rewards
A1, X1, . . . , AT , XT under ν, ν′, respectively. Let Eν denote the expectation under bandit model ν.

Then ∀T ≥ 1,

KL(P, P ′) =

K∑
i=1

Eν [Ni,T ]KL(νi, ν
′
i),

where Ni,T =
∑T

t=1 1({At = i}), and ν = {νi}i∈[K], ν
′ = {ν′i}i∈[K].

Intuitively, suppose we pulled arm 1 N1 times. As the observations are independent KL(P, P ′) =
N1KL(ν1, ν

′
1).

To illustrate the intuition, let us consider a fixed policy which pulls arm i Ni times for i = 1, . . . ,K. We
then have KL(P, P ′) =

∑K
i=1NiKL(νi, ν

′
i).

KL(P, P ′) = Eν

[
log

(
P (A1, X1, . . . , AT , XT )

P ′(A1, X1, . . . , AT , XT )

)]
= Eν

[
log

(
P ({{Yi,r}Ni

r=1}Ki=1)

P ′({{Yi,r}Ni
r=1}Ki=1)

)]

= Eν

log


K∏
i=1

Ni∏
r=1

Pi(Yi,r)

K∏
i=1

Ni∏
r=1

P ′
i (Yi,r)




=

K∑
i=1

Eν

log


Ni∏
r=1

Pi(Yi,r)

Ni∏
r=1

P ′
i (Yi,r)
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=

K∑
i=1

KL(νNi
i , ν′i

Ni)

=

K∑
i=1

NiKL(νi, ν
′
i)

The divergence decomposition lemma says that a similar result holds when we use an adaptive policy,
except with Ni,T replaced with E[Ni,T ]. We will show the full proof of the above lemma next lecture.

To be continued next lecture...
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