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In this lecture, we will continue discussing linear bandits, then discuss Martingale Concentration.

We start by Claim 3 in the LinUCB proof.
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We can summarize our proof of Claim 1 so far as follows:
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Key challenge: The actions and observations are not independent in here. We will instead use the fact
that ξ⊤t a is a martingale. We can use a variety of martingale concentration results to obtain the above result.

Definition (Martingale). A sequence of random variables {Zt}t∈N is a martingale w.r.t another se-
quence {Yt}t∈N if E[Zt|Yt−1] = Zt−1 and E[|Zt|] < ∞, for all t ∈ N

This proof technique is from Rusmevichientong and Tsitsiklis, 2008.
Lemma (Corollary 2.2 from de La Pena et al 2004). If A,B are random variables such that
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The proof is completed by the following observations:

• When a = V
−1/2
t ei, ∥a∥2Vt

= a⊤Vta = e⊤i V
−1/2
t VtV

−1/2
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LinUCB: Proof summary

This general strategy works in other settings as well (GP bandits, generalized linear bandits).

1. First, consider the pseudo-regret, RT =
∑T

t=1(θ
⊤
∗ a∗ − θ⊤∗ At).

2. Define a good event G, where the confidence intervals trap the true means. Then,

RT = E[RT |G]P(G) + E[RT |Gc]P(Gc).

3. Use martingale concentration to bound P(Gc).

4. Under G, we can bound the instantaneous pseudo-regret

θ⊤∗ a∗ − θ⊤∗ At ≤ 2× “conf-width of At at round t− 1”.

Then bound the summation.
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