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In this lecture, we will introduce the online learning framework. In particular, we will discuss the experts
problem and analyze the performance of the Hedge algorithm.

1 Online Learning and The Experts Problem

To motivate the ensuing model, we will begin with two examples.

Example 1 (Online spam detection). Given a hypothesis class H of binary classifiers, where H ∈ {h : X →
{0, 1}}. Consider the following game over T rounds:

1. A learner receives an input email nt ∈ X on round t.

2. The learner chooses some ht ∈ H and predicts ht(nt) (spam or not-spam).

3. Learner sees the label yt and incurs loss 1{ht(nt) ̸= yt}.

Note that the learner knows the loss for all h ∈ H.

Example 2 (Weather forecasting). Given a set of models H. Consider the following game over T rounds:

1. Learner (weather forecaster) chooses some model h ∈ H and predicts the number ŷt.

2. Learner observes the true weather yt and incurs loss ℓ(yt, ŷt).

We can now introduce Expert Problem, which proceeds over T rounds in the following fashion:

1. We are given a set of experts {1, . . . ,K}, denoted [K].

2. On each round, the learner chooses an expert (a.k.a. action) At ∈ [K]. Simultaneously, an adversary
selects a loss vector ℓt ∈ [0, 1]K , where ℓt(i) is the loss for expert i.

3. Learner incurs loss ℓt(At).

4. Learner observes ℓt, the loss incurred by each expert.

This type of feedback, where we observe the loss for all actions, is called full information feedback. The
setting we considered in previous lectures, where we observe losses or rewards only for the action we take,
is called bandit feedback. Unlike in the stochastic bandit setting, however, note that we will not assume
that the loss vectors are drawn from some distribution. Then how do we define regret? Recall that in the
stochastic setting, we let a⋆ = argmini∈[K] EX∼νi

[X] be the action with the highest expected reward and
defined the regret as follows:

RStochastic
T (π, ν) = E

[
T∑

t=1

Xt

]
− Ta∗.
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We can define the regret similarly for full information feedback. Here, in the non-stochastic setting where
loss vectors are arbitrary, we will compete against the best fixed action in hindsight. For a policy π, and a
sequence of losses, ℓ = ℓ1, ..., ℓt, define

R′
T (π, ℓ) =

T∑
t=1

ℓt(At)− min
a∈[K]

T∑
t=1

ℓt(a).

The regret of a stochastic policy π is defined as

RT (π, ℓ) = E [R′
T (π, ℓ)] = E

[
T∑

t=1

ℓt(At)

]
− min

a∈[K]

T∑
t=1

ℓt(a),

where E is with respect to the randomness of the policy.
For a given policy π, we wish to bound RT (π, ℓ) for all loss sequences. That is supℓ RT (π, ℓ). We wish

to do well even if the losses were generated by an adversary that has full knowledge of our policy π. For
now, we start by considering the case where the adversary is oblivious, meaning that ℓt only depends on
the action taken on the current round. We will revisit this assumption in Section 3.

2 The Hedge Algorithm

2.1 Follow The Leader

The most intuitive approach to solve this problem is to choose the action At = argmina∈[K]

∑t−1
s=1 ℓs(a) on

round t. This strategy is called Follow The Leader (FTL). For instance, on the binary classification example,
FTL is simply empirical risk minimization, as it selects

ht = argmin
h∈H

t−1∑
s=1

1(h(xt) ̸= yt).

Unfortunately, FTL cannot guarantee sublinear regret (in fact, no deterministic policy can). Consider the
following example on which FTL fails. Suppose K = 2, and define the loss vectors as follows:

ℓt =


(0.5, 0) if t = 1,

(1, 0) if t is odd and t > 1,

(0, 1) if t is even.

Then, FTL will choose

At =

{
1 on odd rounds,

2 on even rounds.

Observe that the total loss of FTL will be at least T − 1, while the best action in hindsight will have loss at
most T/2. Hence, the regret of FTL is at least T/2− 1 ∈ Ω(T ).

2.2 The Hedge Algorithm

We now introduce the Hedge algorithm. Intuitively our approach is similar to FTL, but we instead use a
soft version of the minimum, and we pick our action stochastically by sampling from a distribution which
gives more weight to actions with small losses. We provide the Hedge algorithm below.
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Algorithm 1 The Hedge Algorithm (a.k.a multiplicative weights, a.k.a exponential weights)

Given time horizon T , learning rate η
Let L0 ← 0K (all zero vector in RK)
for t = 1, ..., T do

Set Pt(a)← e−2Lt−1(a)∑K
j=1 e−2Lt−1(j) ,∀a ∈ [K]

Sample At ∼ Pt (note that Pt ∈ ∆K)
Incur loss ℓt(At), observe ℓt
Update ℓt(a)← Lt−1(a) + ℓt(a),∀a ∈ [K]

end for

2.3 Analysis of Hedge

For any policy π, which on round t samples an action according to pt, define the pseudo-regret relative to
an action k ∈ [K] as

R̄T (π, ℓ, a) =

T∑
t=1

pTt ℓt −
T∑

t=1

ℓt(a).

Let a∗ = argmina∈[K]

∑T
t=1 ℓt(a) be the best fixed action in hindsight. We have

RT (π, ℓ) = E

[
T∑

t=1

ℓt(At)

]
− min

a∈[K]

T∑
t=1

ℓt(a)

= E

[
T∑

t=1

E [ℓt(At) | pt]

]
−

T∑
t=1

ℓt(a
∗)

= E[R̄T (π, ℓ, a
∗)].

Hence, if we can bound R̄T (π, ℓ, a) for any action a ∈ [K] and any p chosen by π, then we can bound
RT (π, ℓ). This strategy is precisely how we will upper bound the regret achieved by the Hedge algorithm.

We start with a technical lemma, and then we will prove the main theorem. In the following analysis,
we define define ℓ2t to be the coordinate-wise square of ℓ, meaning ℓ2t (i) = (ℓt(i))

2.

Lemma 1 (Hedge Lemma). Let p = (p1, . . . , pT ) be the sequence of probability vectors chosen by Hedge with
learning rate η ∈ [0, 1]. Then, for any set of loss vectors ℓ = (ℓ1, . . . , ℓT ), where ℓt ∈ RK

+ , and any a ∈ [K],
if pTt ℓt ≤ 1 for all t, we have

R̄T (π, ℓ, a) ≤
log(K)

η
+ η

T∑
t=1

pTt ℓ
2
t .

Proof Define Φt =
1
η log

(∑K
a=1 e

−ηLt(a)
)
. We have

Φt − Φt−1 =
1

η
log

( ∑K
a=1 e

−ηLt(a)∑K
a=1 e

−ηLt−1(a)

)

=
1

η
log

(∑K
a=1 e

−ηLt−1(a) · e−ηℓt(a)∑K
a=1 e

−ηLt−1(a)

)

=
1

η
log

(
K∑

a=1

pt(a)e
−ηlt(a)

)

≤ 1

η
log

(
K∑

a=1

pt(a)(1− ηℓt(a) + η2ℓ2t (a))

)
(as e−y ≤ 1− y + y2 ∀y ≥ −1)
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=
1

η
log(1− ηpTt ℓt + η2pTt ℓ

2
t )

≤ 1

η
(−ηpTt ℓt + η2pTt ℓ

2
t ) (since log(1 + y) ≤ y ∀y ≥ −1 and ηp⊤t ℓt ≤ 1)

= −pTt ℓt + ηpTt ℓ
2
t .

We have Φt − Φt−1 ≤ −pTt ℓt + ηpTt ℓ
2
t , so ΦT − Φ0 ≤ −

∑T
t=1 p

T
t ℓt + η

∑T
t=1 p

T
t ℓ

2
t . Moreover,

Φ0 =
1

η
log(

K∑
i=1

e−ηL0(i)) =
log(K)

η
(as L0 = 0)

ΦT =
1

η
log(

K∑
i=1

e−ηLT (i)) ≥ 1

η
log(e−ηLt(a)) = −LT (a) = −

T∑
t=1

ℓt(a).

Consequently,

−
T∑

t=1

ℓt(a)−
log(K)

η
≤ −

T∑
t=1

pTt ℓt + η

T∑
t=1

pTt ℓ
2
t ,

so we conclude that

R̄T (π, ℓ, a) =

T∑
t=1

pTt ℓt −
T∑

t=1

ℓt(a) ≤
log(K)

η
+ η

T∑
t=1

pTt ℓ
2
t .

Theorem 3 (Regret Bound of Hedge). Suppose ℓt ∈ [0, 1]K ∀t and choose η =
√

log(K)
T . Then for all

T ≥ log(K), the regret of Hedge satisfies

RT (π
Hedge, ℓ) ≤ 2

√
T log(K).

Proof Let us first check the conditions to satisfy the lemma:

T ≥ logK ⇒ η ≤ 1, ℓt ∈ [0, 1]K ⇒ pTt ℓt ≤ 1.

Then, as ℓ2t (a) ≤ 1 for all a, we have pTt ℓ
2
t ≤ 1. Subsequently, for any p = (p1, . . . , pT ) chosen by Hedge,

R̄T (π, ℓ, a) ≤
log(K)

η
+ ηT ≤ 2

√
2 log(K).

Thus,
RT (π

Hedge, ℓ) = E
[
R̄T (p, ℓ, a∗)

]
≤ 2
√

T log(K).

3 Adversarial Bandits

Thus far we have designed a policy π to minimize supℓ RT (π, ℓ) where ℓ is chosen by an oblivious adversary.
As we have already stated, this means that the adversary chooses the entire loss sequence ℓ = (ℓ1, . . . , ℓT )
ahead of time, or in other words, ℓt can only depend on the action i ∈ [K].

Now, what if ℓ was instead chosen by an adaptive adversary? That is, the adversary can choose a loss
ℓt on round t depending on the history A1, ℓ1, . . . , At−1, ℓt−1. In this setting, called adversarial bandits, we
usually restrict to bandit feedback. In other words, we can view adversarial bandits as a variant of the expert
problem, but where the learner observes the loss only for the action taken. It has the following components:
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1. There are a set of K experts, denoted [K].

2. On round t, the learner chooses an expert (a.k.a. action) At ∈ [K].

3. Simultaneously, an adversary (a.k.a. the environment) picks a loss vector ℓt ∈ [0, 1]K , where ℓt(i) is
the loss for expert i.

4. The learner incurs losses ℓt(At).

5. The learner observes only ℓt(At) (Bandit feedback).

The regret RT (π, ℓ) is defined exactly the same as the expert problem:

R′
T (π, ℓ) =

T∑
t=1

ℓt(At)− min
a∈[K]

T∑
t=1

ℓt(a)

and
RT (π, ℓ) = E[R′

T (π, ℓ)].

As before, we are interested in minimizing supℓ RT (π, ℓ).
We summarize the settings we have seen with the following table.

Full Information Feedback Bandit Feedback
Stochastic Trivial Stochastic bandits
Adversarial Experts problem Adversarial bandits

Note that we will not analyze the stochastic, full information setting because it is easy to see that FTL is
optimal. In the next lecture, we will analyze the adversarial bandits setting and present the EXP3 algorithm.
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