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1 Adversarial Bandits

Adversarial bandits is a variant of the expert problem, where the learner only observes the loss for the action
taken (called bandit feedback). It has the following components:

1. There are a set of K actions, denoted [K].

2. On round t, learner chooses an action At ∈ [K].

3. An adversary (environment) simultaneously picks a loss vector ℓt ∈ [0, 1]K , where ℓt(i) is the loss for
action i.

4. The learner incurs losses ℓt(At).

5. The learner observes only ℓt(At) (Bandit feedback).

Recall for a sequence of losses ℓ = (ℓ1, . . . , ℓT ) ∈ [0, 1]K×T and a sequence of actions A = (A1, . . . , AT ) ∈
[K]T , define the regret as

R′
T (A, ℓ) =

T∑
t=1

ℓt(At)− min
a∈[K]

T∑
t=1

ℓt(a).

For a randomized policy, similarly, we define the regret RT (π, ℓ) as

RT (π, ℓ) = E[R′
T (π, ℓ)] = E

[
T∑

t=1

ℓt(At)− min
a∈[K]

T∑
t=1

ℓt(a)

]

where we take expectation w.r.t. the randomness of π, At ∼ π(·|A1, ℓ1, . . . , At−1, ℓt−1). As before, we are
interested in bounding supℓ∈[0,1]K RT (π, ℓ).

Here, the main challenge, when compared to full information feedback, is in balancing between exploration
and exploitation.

The EXP-3 Algorithm

The main idea of EXP-3 algorithm is built on Hedge. We will estimate ℓt by only observing ℓt(At). For this,
we will use the following inverse probability weighted estimator:

ℓ̂t(a) =
ℓt(a)

pt(a)
1(At = a) =


ℓt(At)
pt(At)

if a = At

0 otherwise

(1)
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Here, pt(a) is the probability of choosing action a on round t in Hedge. So, ℓ̂t(a) would look as follows:

ℓ̂t(a) =
[
0 ... 0 ℓt(At)

pt(At)
0 ... 0

]T
.

We will show that ℓ̂t is an unbiased estimator of ℓt, i.e., E[ℓ̂t|pt] = ℓt.
The EXP3 algorithm is stated below.

Algorithm 1 EXP-3 (Exponential weights for exploration and exploitation)

Require: time horizon T , learning rate η
Set L0 ← 0K ;
for t = 1, 2, ..., T do

Set pt(a)← exp(−ηLt−1(a))∑K
j=1 exp(−ηLt−1(j))

;

Sample At ∼ pt, and execute At.
Observe loss ℓt(At);

Update Lt(At)← Lt−1(At) +
ℓt(At)
pt(At)

;

Update Lt(a)← Lt−1(a),∀a ̸= At;
end for

Intuitively, the exploitation for EXP3 comes from the fact that arms with large losses are discounted more
in the losses. The exploration comes from the fact that we only discount arms that were pulled, so arms
that are pulled less frequently are more likely to be pulled in future rounds.

Before analyzing the algorithm, we state the following lemma.

Lemma 1. If ℓ̂t is chosen as in Eq. (1), the followings are true for all a ∈ A:

1. E[ℓ̂t(a) | pt] = ℓt.

2. [ℓ̂2t (a) | pt] =
ℓ2t (a)
pt(a)

.

The expectation is w.r.t. the randomness of the algorithm.

Proof (proof of Lemma 1)

(i) For any a ∈ [K], E[ℓ̂t(a) | pt] = pt(a)
ℓt(a)
pt(a)

+ (1− pt(a)) · 0 = ℓt(a).

(ii) Similarly, for any a ∈ [K], E[ℓ̂2t (a) | pt] = pt(a)
ℓ2t (a)

p2
t (a)

+ (1− pt(a)) · 0 =
ℓ2t (a)
pt(a)

.

We have the theorem for the upper bound of the regret of EXP3 as follows.

Theorem 1 (EXP3). Suppose ℓt ∈ [0, 1]K for all t, and we choose η =
√

log(K)
KT . Then for all T , the regret

of EXP3 satisfies
RT (π, ℓ) ≤ 2

√
KT log(K).

Remark The regret of Hedge is O(
√
T logK) whereas for Hedge it is O(

√
KT log(K)). The additional√

K factor is due to reduced (limited) feedback.

Before getting into proving Theorem 1, recall the following lemma from the Hedge theorem.
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Lemma 2. (Hedge Lemma) Let λ = (λ1, . . . , λT ) ∈ RK
+ be a sequence of losses. Let p = (p1, . . . , pT ) be the

sequence of probability vectors chosen by Hedge with learning rate η ∈ [0, 1]. For any a ∈ [K], if p⊤t λt ≤ 1
for all t, we have

R̄T (p, λ, a)
△
=

T∑
t=1

p⊤t λt −
T∑

t=1

λt(a) ≤
log(K)

η
+ η

T∑
t=1

p⊤t λ
2
t .

Proof (proof of Theorem 1)

Let a∗ = argmina∈[K]

∑T
t=1 ℓt(a) be the best fixed arm in hindsight. We will apply the Hedge lemma

stated above with λt ← ℓ̂t and a← a∗. The conditions of the lemma is satisfied:

η =

√
log(K)

KT
≤ 1, as K ≥ 2 and T ≥ 1.

p⊤t ℓ̂t =

K∑
a=1

pt(a) ·
ℓt(a)

pt(a)
1(At = a) = pt(At) ·

ℓt(At)

pt(At)
= ℓt(At) ≤ 1.

Therefore, we have,
T∑

t=1

p⊤t ℓ̂t −
T∑

t=1

ℓ̂t(a∗) ≤
log(K)

η
+ η

T∑
t=1

p⊤t ℓ̂t
2
. (2)

Recall for any a, we have (i) E[ℓ̂t(a)|pt] = ℓt(a), (ii) E[ℓ̂2(a)|pt] =
ℓ2t (a)
pt(a)

. We then take expectations of

Equation 2 on both sides,

E[LHS] = E

 T∑
t=1

E[p⊤t ℓ̂t|pt]−
T∑

t=1

E[ℓ̂t(a∗)|pt]︸ ︷︷ ︸
=ℓt(a∗) by (i)

 .

Further by (i) again, we have

E[p⊤t ℓ̂t|pt] = p⊤t E[ℓ̂t|pt] = p⊤t ℓt = p⊤t ℓt = E[ℓt(At)|pt].

Therefore,

E[LHS] = E

[
T∑

t=1

E[ℓt(At) | pt]−
T∑

t=1

ℓt(a∗)

]
= E

[
T∑

t=1

ℓt(At)

]
−

T∑
t=1

ℓt(a∗) = RT (π, ℓ).

For the RHS,

E[RHS] =
log(K)

η
+ ηE

[
T∑

t=1

E[p⊤t ℓ̂t
2
|pt]

]
.

By (ii) and the fact that the losses are bounded in [0, 1],

E[p⊤t ℓ̂t
2
|pt] = p⊤t E[ℓ̂2t |pt] =

K∑
a=1

pt(a) ·
ℓ2t (a)

pt(a)
=

K∑
a=1

ℓ2t (a) ≤ K.

Therefore,

E[RHS] ≤ log(K)

η
+ ηKT.

Hence,

RT (π, ℓ) ≤
log(K)

η
+ ηKT ≤ 2

√
KT log(K) as η =

log(K)

KT
.
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2 Lower bounds for adversarial bandits

The following theorem provides a lower bound for the minimax rate of regret of the adversarial multi-armed
bandit problem.

Theorem 2. For the adversarial multi-armed bandit problem, the minimax regret satisfies,

inf
π

sup
ℓ∈[0,1]K×T

RT (π, ℓ) ∈ Ω(
√
KT ).

Remark Recall the minimax lower bound for stochastic bandits is infπ supν∈P RT (π, ν) ∈ Ω(
√
KT ).

Note that the adversarial bandit problem is is applicable in more general settings than the stochastic bandit
problem. Moreover, the regret definitions are different for the adversarial bandit and stochastic bandit
problems. For the adversarial bandits, the regret depends on the best action in hindsight. While, the regret
of stochastic bandits depends on the arm with the lowest expected mean value. Despite this, we find that
the minimax regret is similar for both problems. This is because the hardest stochastic bandit problems are
as hard as the hardest adversarial bandit problems. In fact, the proof of this lower bound will rely on similar
techniques to the proof of the lower bound for stochastic bandits.

Our proof will consider stochastic losses and show that the expected regret is large. Then, there is at
least one sequence of losses (drawn from this distribution) for which the regret should be large.

In the proof, we will use Bretagnolle-Huber inequality stated as follows. Let P0, P1 be any two distribu-
tions. For any event A,

P0(A) + P1 (A
c) ≥ 1

2
e−KL(P0,P1).

Proof Let π be given. We will consider two stochastic bandit models ν(1) and ν(2), where ν(j) =

(ν
(j)
1 , ν

(j)
2 , . . . , ν

(j)
K ) and each ν

(j)
i has Bernoulli losses.

Let P (1) and P (2) denote the probability distributions of the action-loss sequenceA1, ℓ1(A1), ..., AT , ℓ1(AT )
due to π’s interaction with ν(1) and ν(2) respectively.

Let E(1) and E(2) denote the corresponding expectations.
Let Eπ denote the expectation with respect to the randomness in the policy. Define

R′
T (A, ℓ)

△
=

T∑
t=1

ℓ(At)− min
a∈[K]

T∑
t=1

ℓ(a),

so that RT (π, ℓ) = Eπ[R]T (A, ℓ)]. We can now lower bound the worst case regret for π as follows,

sup
ℓ∈[0,1]K×T

RT (π, ℓ) = sup
ℓ∈[0,1]K×T

Eπ[R
′
T (A, ℓ)]

≥ Ej∼Unif({1,2})Eℓ∼ν(j)Eπ[R
′
T (π, ℓ)]

=
1

2
Eπ [Eℓ∼ν(1) [R′

T (A, ℓ)]] +
1

2
Eπ [Eℓ∼ν(2) [R′

T (A, ℓ)]] .

The inequality uses max ≥ avg, noting that j ∼ Unif({1, 2}) and then ℓ ∼ ν(j) defines a distribution over
[0, 1]K×T .

Noting that the pointwise minimum is concave, by Jensen’s inequality,

Eℓ∼ν(j) [R′
T (π, ℓ)] = Eℓ∼ν(j)

[
T∑

t=1

ℓt(At)− min
a∈[K]

T∑
t=1

ℓt(a)

]

≥ Eℓ∼ν(j)

[
T∑

t=1

ℓt(At)

]
− min

a∈[K]
Eℓ∼ν(j)

T∑
t=1

ℓt(a)

= Eℓ∼ν(j)

[
T∑

t=1

ℓt(At)

]
− Tµ∗

j ,
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where µ∗
j = mina∈[K] EX∼ν

(j)
i

[X] (the optimal value in ν(j)).

Now we take Eπ on both sides of Equation 2,

Eπ [Eℓ∼ν(j) [R′
T (π, ℓ)]] ≥ E(j)

[
T∑

t=1

ℓt(At)

]
− Tµ∗

j = Rstoc
T (π, ν(j)),

where E(j) is expectation under π’s interaction with ν(j), and Rstoc
T (π, ν(j)) is the ”stochastic bandit regret”

of policy π on the stochastic bandit model ν(j). Combine the equality above with Equation 2, we have

sup
ℓ∈[0,1]K×T

RT (π, ℓ) ≥
1

2

(
Rstoc

T (π, ν(1)) +Rstoc
T (π, ν(2))

)
.

Denote Na,T =
∑T

t=1 1(At = a). Let ν(1) be defined as,

ν
(1)
1 = Bern

(
1

2
− δ

)
and ν

(1)
i = Bern

(
1

2

)
,∀ i ∈ {2, . . . ,K},

where δ < 1/8 is a parameter that we will specify later.

Since
∑K

a=1 E(1)[Na,T ] = T , there exists some a′ ∈ {2, . . . ,K} such that E(1)[Na′,T ] ≤ T/(K − 1). Define
ν(2) so that,

ν
(2)
a′ = Bern

(
1

2
− 2δ

)
and ν

(2)
i = ν

(1)
i for all i ̸= a′.

From our construction,

Rstoc
T

(
π, ν(1)

)
≥ P(1) (N1,T ≤ T/2)

Tδ

2
, Rstoc

T

(
π, ν(2)

)
≥ P(2) (N1,T > T/2)

Tδ

2
.

Therefore,

sup
ℓ∈[0,1]K×T

RT (π, ℓ) ≥
Tδ

4

(
P(1) (N1,T ≤ T/2) + P(2) (N1,T > T/2)

)
≥ Tδ

8
exp

(
−KL

(
P(1),P(2)

))
,

where the last inequality is by Bretagnolle-Huber inequality.
Noting that E(1) [Na′,T ] ≤ T/(K − 1) by our construction, we have

KL
(
P(1),P(2)

)
=

K∑
i=1

E(1) [Na,T ] KL
(
ν
(1)
i , ν

(2)
i

)
= E(1) [Na′,T ] KL

(
ν
(1)
a′ , ν

(2)
a′

)
≤ T

K − 1
· C1(2δ)

2 = C2
Tδ2

K − 1
.

Therefore,

sup
ℓ∈[0,1]K×T

RT (π, ℓ) ≥
Tδ

8
exp

(
C2

Tδ2

K − 1

)
.

Choosing δ =
√
(K − 1)/T , we have

sup
ℓ∈[0,1]k×T

RT (π, ℓ) ≥ C3

√
T (K − 1).
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