
CS861: Theoretical Foundations of Machine Learning Lecture 22 - 10/25/2024

University of Wisconsin–Madison, Fall 2024

Lecture 22:Contextual Bandits, Online Convex Optimization

Lecturer: Kirthevasan Kandasamy Scribed by: Xinyu Li and Zhexuan Liu

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the instructor.

Contextual Bandits

So far, we have looked at K arms (actions) and competed against the single best action in hindsight. But
the best action may depend on contextual information, which may be available to the learner. For example,
Advertising (bandits): find the best ad; Targeted advertising (contextual bandits): find the best ad for a
given query/user (context).

A policy which has good regular bandit regret may have poor performance in a real-world application.

Definition 1 (The contextual bandit problem). We will define the contextual bandit problem as follows:

(1) There are a set of K actions, denoted [K].

(2) At the beginning of each round t, the adversary picks a context xt ∈ X . The learner observes xt.

(3) The learner then chooses an action At ∈ [K].

(4) The adversary simultaneously (i.e. without knowledge of At) picks a loss vector ℓt ∈ [0, 1]K , where
ℓt(i) is the loss for action i.

(5) The learner incurs the loss ℓt(At).

(6) The learner observes only ℓt(At).

Question: How do we define regret here?

■ One option is to compete against the best action for the given context:

RT (π, ℓ, x) = E
[T∑

t=1

ℓt(At)
]
− min

e:X→[K]

T∑
i=1

ℓt(e(xt))

where E is w.r.t. the randomness of policy. Here, we are competing against the single best mapping
from contexts to actions.

▲ This is like running a separate bandit algorithm for different contexts.

▲ And this is challenging if the number of possible contexts is large (possibly infinite), but also
unnecessary if there are relationships between contexts. (e.g querying ‘frying pan’ vs ‘non-stick
skillet’ in targeted advertising)

■ Instead, we will look at a set of N ”experts” who map contexts to actions and we will now be competing
against the single best expert in hindsight. Here, the experts could be, say, machine learning models
trained on a variety of large datasets.

1

▲ If the experts are {e1, . . . , eN}, where ej : X → [K] ∀j ∈ [N], then write

RT (π, ℓ, x) = E
[T∑

t=1

ℓt(At)
]
− min

j∈[N]

T∑
t=1

ℓt(ej(xt))

Question: Can we apply EXP3 algorithm here by treating the experts as actions?

■ Yes, as we can define a loss vector ℓ̃t ∈ [0, 1]N , where ℓ̃t(j) = ℓt(ej(xt)). But the regret is going to be

large. RT ∈ O(
√

TN log(N)) which is fine as long as the number of experts, N , is small. However, we
are usually interested in cases where we have many more experts than possible actions, N ≫ K. N
could be as large as |X |K(if X is finite). If the experts are ML models, N could be discretizations of
the weights of the model. We wish to reduce from poly(N) to poly log(N).

EXP4 algorithm Build on EXP3, but use the fact that when we observe feedback, we can discount all
experts who would have chosen the action.

The EXP4 algorithm

Just like we built on Hedge to arrive at the EXP3 algorithm, we are going to build on the EXP3 algorithm
to arrive at the EXP4 algorithm here. We will treat the experts as arms here and run EXP3 on them, but
what we will do differently here is the following: we will use the fact that when we observe feedback, we can
discount all the experts who would have chosen the action. Based on this, we can express the pseudocode
of EXP4 as shown below:

Algorithm 1 The EXP-4 algorithm (Exponential weights for exploration and exploitation with experts)

Require: Time horizon T , learning rate η
Let L̃0 ← 0N

for t = 1, ..., T do
Observe context

Construct p̃t as follows, p̃t(i) =
e−ηL̃t−1(i)∑N

j=1 e−ηL̃t−1(j)
, for all experts i ∈ [N]

Construct pt ∈ ∆([K]) via, pt(a) =
∑N

j=1 p̃t(j)I(ej(xt) = a)
Sample At ∼ pt and execute At. Observe ℓt(At).

Compute action losses, ℓ̂t(a)← ℓt(a)
pt(a)

I(At = a) ∀a ∈ [k]

Compute expert losses, ℓ̃t(j)← ℓ̂t(ej(xt)) ∀j ∈ [N]

Update cumulative losses, L̃t(j)← L̃t−1(j) + ℓ̃t(j) ∀j ∈ [N]
end for

Remark Some observations about the EXP4 algorithm:

• Instead of explicitly constructing pt, we can sample an expert Et from p̃t and then choose At = Et(xt).

• We can write the loss update as

L̃t(j)←− L̃t−1(j) + 1{ej(xt) = At} ·
ℓt(At)

pt(At)

We are using the probability of choosing At (via pt), and not just the probability of choosing the
relevant expert Et.

2

▲ Note that we are not discounting only one expert here. That is, we are NOT utilizing the following
update rule:

L̃t(j)←− L̃t−1(j) + 1{Et = j} · ℓt(At)

p̃t(Et)

Theorem 1 (Regret bound for EXP4). Suppose that the loss vectors on each round t satisfy ℓt ∈ [0, 1]K and

we choose η =
√

log(N)
KT . Then for all T ≥ log(N)/K, and all ℓ ∈ [0, 1]K×T and x ∈ X T , the regret of EXP4

satisfies,
RT (π

EXP4, ℓ, x) ≤ 2
√

KT log(N)

where N is the number of experts.

We will use Hedge lemma to prove this result.

Lemma 1. (Hedge Lemma) Let λ = (λ1, . . . , λT) ∈ RN
+ be a sequence of losses. Let p̃ be the sequence of

probability vectors chosen by Hedge with learning rate η ∈ [0, 1]. For any j ∈ [N], if p̃Tt λt ≤ 1 for all t, we
have

T∑
t=1

p̃Tt λt −
T∑

t=1

λt (ej) ≤
log(N)

η
+ η

T∑
t=1

p̃Tt λ
2
t

Proof
Let j⋆ = argminj∈[N]

∑T
t=1 ℓt (ej (xt)) be the best fixed expert in hindsight. We will apply the lemma

with j ← j⋆, and λt ∈ RN
+ where λt(i)← ℓ̃t (ei (xt)). Let us first verify the conditions,

η =
√
log(N)/(KT) ≤ 1 as T ≥ log(N)/K

To verify p̃Tt ℓ̃t ≤ 1, recall that ℓ̃(j)← ℓ̂t (ej (xt)) =
ℓt(ej(xt))
pt(ej(xt))

1 (At = ej (xt)). Therefore,

p̃Tt ℓ̃t =

N∑
j=1

p̃t(j)
ℓt (ej (xt))

pt (ej (xt))
1 (At = ej (xt)) =

ℓt (At)

pt (At)

N∑
j=1

p̃t(j)1 (At = ej (xt))

=
ℓt (At)

pt (At)
× pt (At) = ℓt (At) ≤ 1

Now consider,

E
[
ℓ̃t(j) | p̃t

]
= pt (ej (xt)) ·

ℓt (ej (xt))

pt (ej (xt))
+ (1− pt (ej (xt))) · 0 = ℓt (ej (xt))

Similarly,

E
[
ℓ̃2t (j) | p̃t

]
= pt (ej (xt)) ·

ℓ2t (ej (xt))

p2t (ej (xt))
+ (1− pt (ej (xt))) · 0 =

ℓ2t (ej (xt))

pt (ej (xt))

Remark: Here, we have pt (ej (xt)) =
∑

k p̃t(k)1 (ek (xt) = ej (xt)) in the denominator. Naively applying
EXP3 we will get p̃ (ej (xt)) < pt (ej (xt)) in the denominator. The estimate for the loss in EXP4 has lower

variance since E
[
ℓ̃2t | p̃t

]
is smaller.

Applying the Hedge lemma with j ← j⋆, we get

T∑
t=1

p̃Tt ℓ̃t −
T∑

t=1

ℓ̃t (j⋆) ≤
log(N)

η
+ η

T∑
t=1

p̃Tt ℓ̃
2
t

3

Let us take expectations on both sides.

E[LHS] = E [E [LHS | pt]] = E[
T∑

t=1

E
[
p̃⊤t ℓ̃t | p̃t

]
−

T∑
t=1

E
[
ℓ̃t (j∗) | p̃t

]
︸ ︷︷ ︸

=ℓt(ej∗ (xt))

]

We then have

E
[
p̃Tt ℓ̃t | p̃t

]
= p̃Tt E

[
ℓ̃t | p̃t

]
=

n∑
j=1

p̃(j)ℓt (ej (xt)) =

n∑
j=1

p̃(j)

K∑
a=1

ℓt(a)1 (a = ej (xt))

=

K∑
a=1

ℓt(a)

n∑
j=1

p̃(j)1 (a = ej (xt))︸ ︷︷ ︸
=pt(a)

= pTt ℓt = E [ℓt (At) | pt] .

Therefore,

E[LHS] = E

[
T∑

t=1

E [ℓt (At) | p̃t]−
T∑

t=1

ℓt (ej⋆ (xt))

]

= E

[
T∑

t=1

ℓt (At)

]
− min

j∈[N]

T∑
t=1

ℓt (ej (xt)) = RT

(
πEXP4, ℓ, x

)
Now consider the RHS of Hedge inequality,

E[RHS] = E [E [RHS | p̃t]] =
log(N)

η
+ ηE

[
T∑

t=1

E
[
p̃Tt ℓ̂

2
t | p̃t

]]

As losses are bounded in [0, 1], we have

E
[
p̃Tt ℓ̂

2
t | p̃t

]
=

N∑
j=1

p̃t(j)
ℓ2t (ej (xt))

pt (ej (xt))
=

N∑
j=1

p̃(j)

K∑
a=1

ℓ2t (a)

pt(a)
1 (ej (xt) = a)

=

K∑
a=1

ℓ2t (a)

pt(a)

N∑
j=1

p̃(j)1 (ej (xt) = a) =

K∑
a=1

ℓ2t (a)

pt(a)
pt(a) ≤ K

Therefore,

E[RHS] ≤ log(K)

η
+ ηKT

We have,

RT

(
πEXP4, ℓ, x

)
≤ log(N)

η
+ ηKT

≤ 2
√
KT log(N) as η =

√
log(N)/(KT)

4

Online Convex Optimization

Definition 2 (Convex set). A set Ω ⊂ Rd is called convex if, for every two points ω, ω′ ∈ Ω and every
α ∈ [0, 1], we have αω + (1− α)ω′ ∈ Ω.

Figure 1: Example of a convex set (left) and a non-convex set (right)

Definition 3 (Convex function). A function f : Ω → R is convex if Ω is a convex set and ∀α ∈ [0, 1] and
all u, v ∈ Ω we have, f(αu + (1 − α)v) ≤ αf(u) + (1 − α)f(v). Equivalently, f is convex if, for all ω ∈ Ω,
there exists g ∈ Rn such that ∀ω′ ∈ Ω, we have f (ω′) ≥ f(ω) + gT (ω′ − ω).

Figure 2: Example of a convex function (top) and a non-convex set (bottom)

Definition 4 (Subgradients and Subdifferentials). Any g which satisfies the theorem above is called a sub-
gradient of f at ω. The set of all subgradients of ω are called the subdifferential, and denoted ∂f(ω).

Some useful facts about subgradients:

• If f is differentiable at ω, then ∂f(ω) = {∇f(ω)}.

• 0 ∈ ∂f(ω)⇐⇒ ω ∈ argminω∈Ω f(ω).

• If g1 ∈ ∂f1(ω) and g2 ∈ ∂f2(ω), then

αg1 + βg2 ∈ (α∂f1 + β∂f2) for all α, β ∈ R

5

Definition 5 (strong convexity). A convex function f : Ω → R is α-strongly convex in some norm ∥ · ∥ if,
f (ω′) ≥ f(ω) + gT (ω′ − ω) + α

2 ∥ω
′ − ω∥2 ∀g ∈ ∂f(ω).

Remark. If f is strongly convex in ∥ · ∥2, this is equivalent to saying that f(ω)− α
2 ∥ω∥

2
2 is convex, i.e f

is at least as convex as a quadratic function.
Define h(ω) = f(ω)− α

2 ∥ω∥
2
2. Then, g ∈ ∂f(ω)⇐⇒ g − αω ∈ ∂h(ω).

h (ω′) ≥ h(ω) + (g − αω)T (ω′ − ω)⇐⇒

f (ω′)− α

2
∥ω′∥22 ≥ f(ω)− α

2
∥ω∥22 + (g − αω)T (ω′ − ω)⇐⇒

f (ω′) ≥ f(ω) + gT (ω′ − ω) +
α

2
∥ω − ω′∥22

Acknowledgements

The note is based on the scribed lecture materials prepared in Fall 2023 by Haoyue Bai & Deep Patel.

6

