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In this lecture, we will introduce online convex optimization. We will first introduce the basic concepts
about convexity and then move to two motivating examples, the online linear classification, and the expert
problem, and give a unified framework for online convex optimization. Then, we will discuss two meth-
ods, Follow the Leader(FTL), and Follow the Regularized Leader(FTRL). Finally, we will use several
examples to show how to choose the regularizer.

1 Convexity review

Definition 1 (Convex function). We will present two equivalent definitions of convex functions:

(i.) A function f : Ω → R is convex if Ω is a convex set for ∀ α ∈ [0, 1], and ∀ u, v ∈ Ω, we have:

f(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v).

(ii.) Equivalently f is convex if ∀ w ∈ Ω,∃ g ∈ Rn, s.t.,∀ w′ ∈ Ω, we have:

f(w′) ≥ f(w) + gT (w′ − w)

Definition 2 (Sub-gradients and sub-differential). We will present the definition for sub-gradient and sub-
differential.

(i.) Any g ∈ Rn which satisfies (ii) in the above definition is called a subgradient of f at w.

(ii.) The set of subgradient of f at w are called sub-differential and denote ∂f(w).

Remark Some useful facts about sub-gradients:

(i.) If f is differentiable, ∂f(w) = {∇f(w)}.

(ii.) 0 ∈ ∂f(w) ⇔ w ∈ argmin
w∈Ω

f(w).

(iii.) For finite-valued convex functions1 (f1, f2) and positive scalars (α1, α2), if g1 ∈ ∂f1(w) and g2 ∈ ∂f2(w),
then α1g1 + α2g2 ∈ ∂h(w), where h = α1g1 + α2g2.

Definition 3 (Strong Convexity). A convex function f : Ω → R is α-strongly convex in some norm || · ||, if
f(w′) ≥ f(w) + gT (w′ − w) + α

2 ||w
′ − w||2, ∀g ∈ ∂f(w).

Example 1. Some examples of strongly-convex functions:

(i.) f(w) = 1
2 ||w||

2
2 is 1-strongly convex is || · ||2.

1Refer to Theorem 8.11 here: https://people.eecs.berkeley.edu/~brecht/opt4ml_book/O4MD_08_Subgradients.pdf
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Figure 1: The blue curve above depicts a convex function, f , whereas the red lines denote the first-order linear
underestimators to this function f . Additionally, these linear underestimators also serve as three of the uncountably-
infinite possible subgradients at the non-different point ((0.8, 0.52)) on function f .

(ii.) The negative entropy f(w) =
∑d

i=1 w(i) log(w(i)) is 1-strongly convex in || · ||1, when Ω = ∆d.

Proof of (ii)
As f is differentiable, ∂f(ω) = {∇f(ω)}. Therefore, we need to show, for all ω, ω′ ∈ ∆([d]), we have

f(ω′) ≥ f(ω) +∇f(ω)⊤(ω′ − ω) +
1

2
∥ω′ − ω∥21.

⇐⇒ f(ω′)− f(ω)−∇f(ω)⊤(ω′ − ω) ≥ 1

2
∥ω′ − ω∥21.

Note that
∂fω(i)

∂ω(i)
= 1 + log(p(i)).

Therefore,

LHS =

K∑
i=1

ω′(i) log(ω′(i))−
K∑
i=1

ω(i) log(ω(i))−
K∑
i=1

(1 + log(ω(i)))(ω′(i)− ω(i))

=

K∑
i=1

ω′(i) log

(
ω′(i)

ω(i)

)

= KL(ω′, ω) ≥ 1

2
∥ω′ − ω∥21.

The last step follows by Pinsker’s inequality,

KL(P,Q) ≥ 2TV (P,Q)2 = 2

(
1

2
∥P −Q∥1

)2

.

Remark Some remarks and properties of strongly-convex functions:

(i.) If f is strongly convex in || · ||2, then this is equivalent to saying that f(w)− α
2 ||w||

2
2 is convex. In other

words, f is ‘at least as convex as a quadratic function’.

(ii.) If f is α-strongly convex and f2 is convex, then βf1 + f2 is (βα)-strongly convex ∀β > 0.

(iii.) Let w∗ = argmin
w∈Ω

f(w), where f is α-strongly convex. Then f(w) ≥ f(w∗) + α
2 ||w − w∗||2. The proof

uses the definition of strong convexity and the fact that 0 ∈ ∂f(w∗).
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Definition 4 (Dual norm). Given a norm || · ||, its dual norm || · ||∗ is defined as:

||w||∗ = max
||u||≤1

uTw

Example 2. Some examples of dual-norm pairs:

(i.) (|| · ||2, || · ||2)

(ii.) (|| · ||1, || · ||∞)

(iii.) More generally, the following are also dual-norm pairs when considering ℓα-norms (α > 0):

(|| · ||p, || · ||q), where p, q > 0 and
1

p
+

1

q
= 1

Lemma 1 (Hölder’s inequality). ∀a, b ∈ Rd, aT b ≤ ||a|| · ||b||∗.

2 Examples and Unified Framework

We will first present two examples to show what is online convex optimization. The online linear classification,
and the expert problem.
Example 3 (online linear classification). Let Θ

{
θ ∈ Rd : ∥θ∥2 ≤ 1

}
. On each round, the learner chooses

some θt ∈ Θ. Simultaneously, the environment picks an instance {xt, yt} ∈ X × Y where the domain
X ∈ Rd,Y = {+1,−1}. Then, the learner incurs the hinge loss ℓt(θt) = max{0, 1 − ytθ

⊤
t xt}. Finally, the

learner observes the instance {xt, yt}, and hence knows the loss for all θ ∈ Θ. The regret is defined as follows

RT

(
π, {xt, yt}Tt=1

)
=

T∑
t=1

ℓt(θt)−min
θ∈Θ

T∑
t=1

ℓt(θ)

Example 4 (The Expert Problem). Given K arms, and denote ∆K = {p ∈ RK
+ : p⊤1 = 1}. On each round

t, the learner chooses some pt ∈ ∆K . Simultaneously, the environment picks a loss vector ℓt ∈ [0, 1]K . Then,
the learner incurs the loss p⊤t ℓt. Finally, the learner observes the loss vector ℓt, and hence knows the loss for
all p ∈ ∆K . The regret is defined as follows

RT (π, ℓ) =

T∑
t=1

p⊤t ℓt − min
a∈[K]

T∑
t=1

ℓt(a) =

T∑
t=1

p⊤t ℓt − min
p∈∆K

T∑
t=1

p⊤ℓt

where minp∈∆K

∑T
t=1 p

⊤ℓt = mina∈[K]

∑T
t=1 ℓt(a) is easy to see if we take derivative w.r.t. each coordi-

nates of p in
∑T

t=1 p
⊤ℓt.

We will now present a unified framework for online convex optimization.

Definition 5 (Online convex optimization). Consider the following frame. A learner is given a weight space
Ω ⊂ Rd. On each round t , the learner chooses a weight vector wt ∈ Ω. Simultaneously, the environment
chooses a loss function ft : w → R, a mapping from weight space to real line. Then the linear incurs the loss
ft(wt). Finally, the learner observes the loss function ft, and hence knows the value of ft(w) for all w ∈ Ω.

In the above framework, if (1) the weight space Ω is convex and compact, and (2) the loss function ft at
every round is convex, the framework is called online convex optimization.

Given a horizon T . The goal is to minimize the regret against the best-fixed weight vector in Ω w.r.t.
the policy π of choosing the weight vector at each round.

RT

(
π, f

)
=

T∑
t=1

ft(wt)−min
w∈Ω

T∑
t=1

ft(w)

In example 3, the ℓ2-ball is convex and compact, and the hinge loss is convex. In 4, ∆K is convex and
compact, and the loss p⊤t ℓt is a linear function of pt and thus convex.
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3 Follow the Regularized Leader

A most straightforward policy is Follow the Leader(FTL). The weight wt is chosen by

wt ∈ arg min
w∈Ω

t−1∑
s=1

fs(w)

which is the best weight vector based on the observed loss function. However, this is often a bad idea,
as the chosen weight could fluctuate from round to round. Therefore, we will stabilize the FTL by adding a
regularized term Λ(w)

wt ∈ arg min
w∈Ω

{
t−1∑
s=1

fs(w) + Λ(w)

}
We call the above policy with the regularized term Follow the Regularized Leader(FTRL), and we

will give its regret upper bound.

Theorem 5 (Regret Upper Bound for FTRL). For any u ∈ Ω, FTRL satisfies

RT (FTRL, f) ≤
T∑

t=1

ft(wt)−
T∑

t=1

ft(u)

≤
T∑

t=1

(ft(wt)− ft(wt+1)) + Λ(u)−min
w∈Ω

Λ(w)

N.B. We have not assumed convexity of Ω, ft, or Λ in the theorem.

Proof The first inequality is by the definition of regret. For the proof of the second inequality, we denote

Ft(w) =

t∑
s=1

fs(w) + Λ(w)

and let

Φt = min
w∈Ω

Ft(w) = Ft(wt+1)

Consider Φt−1 − Φt, and we have

Φt−1 − Φt = Ft−1(wt)− Ft(wt+1)

= Ft−1(wt)− (Ft−1(wt+1) + ft(wt+1))

= (Ft−1(wt)− Ft−1(wt+1))− ft(wt+1))

≤ −ft(wt+1)

since Ft−1(wt) ≤ Ft−1(wt+1), Then we will have

Φt−1 − Φt + ft(wt) ≤ ft(wt)− ft(wt+1)

by adding ft(wt) to both sides of the equation. Then we sum both sides from t = 1, .., T , and we will have

Φ0 − ΦT +

T∑
t=1

ft(wt) ≤
T∑

t=1

(ft(wt)− ft(wt+1))
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We can compute the values of ΦT ,Φ0 as follows:

ΦT = min
w∈Ω

(
T∑

s=1

fs(w) + Λ(w)

)
≤

T∑
s=1

fs(u) + Λ(u)

Φ0 = min
w∈Ω

Λ(w)

Therefore, we have

T∑
t=1

ft(wt)−
T∑

s=1

fs(u)− Λ(u) + min
w∈Ω

Λ(w) ≤
T∑

t=1

(ft(wt)− ft(wt+1))

and thus

RT (FTRL, f) ≤
T∑

t=1

ft(wt)−
T∑

t=1

ft(u)

≤
T∑

t=1

(ft(wt)− ft(wt+1)) + Λ(u)−min
w∈Ω

Λ(w)

Remark:

• The above theorem implies that for follow the leader (FTL),

RT (FTRL, f) ≤
T∑

t=1

(ft(wt)− ft(wt+1)) .

• If wt fluctuates frequently, the regret of FTRL/FTL will be bad.

• The purpose of the regularized term Λ(w) is to stabilize the chosen weight wt.

4 Examples Analysis: How a regularizer is Chosen

To motivate how a regularizer is chosen, we will consider 3 examples for FTL with Ω = [0, 1] and ft : [0, 1] →
[0, 1]

4.1 Example 1: FTL with linear losses

First, Let Ω = [0, 1]. Then we define ft(w) ∀w ∈ Ω:

ft(w) =


1
2w if t = 1

w if t is odd, t > 1

1− w if t is even

We have:

Ft(w) =

t∑
s=1

fs(w) =

{
1
2w + t−1

2 if t is odd

− 1
2w + t

2 if t is even
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Hence, we have the following:

wt = argmin
w∈[0,1]

Ft−1(w) =

{
0 if t is even

1 if t is odd

Therefore, we obtain the Upper Bound from the Thm 3:

RT ≤
T∑

t=1

ft(wt)− ft(wt−1) =
∑

t s.t t is odd

(1− 0) +
∑

t s.t t is even

(1− 0) ≃ T.

The bound given by the theorem is O(T ). Moreover, it is not hard to see that the actual regret is also large.
The total loss of FTL is at least T − 1. The best action in hindsight will have loss at most T

2 . Therefore,

we have Regret ≥ T
2 − 1, and we could see that the Bound on RT is pretty tight. The linear losses are bad

use case for FTL.

4.2 Example 2: FTL with quadratic losses

Let Ω = [0, 1], and we define ft(w),∀w ∈ Ω as following:

ft(w) =

{
w2 if w is odd

(1− w)2 if w is even

Similar to the previous example, the best action for a given round oscillates between 0 and 1. However, we
will see that the regret is not large.

First note that the sum of losses can be written as:

Ft(w) =

{
t+1
2 w2 + t−1

2 (1− w)2 if t is odd
t
2

(
w2 + (1− w)2

)
if t is even

Hence we have,

wt = argmin
w∈[0,1]

Ft−1(w) =

{
1
2 if t is odd
1
2 − 1

2t if t is evens

We see that the choices made by FTL do not oscillate much, with wt → 1
2 as t → ∞. We have the following

upper bound:

RT ≤
T∑

t=1

ft (wt)− ft (wt+1)

=
∑

t s.t t is odd

(
1

2

)2

−
(
1

2
− 1

2(t+ 1)

)2

+
∑

t s.t t is even

(
1

2
+

1

2t

)2

−
(
1

2

)2

=

T∑
t=1

O
(
1

t

)
+O

(
1

t2

)
∈ O (log T )

Acknowledgement

These notes are based on scribed lecture materials prepared in Fall 2023 by Xindi Lin, Tony Chang Wang,
and Haoyue Bai,Deep Patel.

6


