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In this lecture we will continue where we left off in the previous lecture, by looking at the examples of
FTL (follow the leader algorithm).

Example 2: FTL with quadratic losses (cont’d)

Example 1: Ω = [0, 1], ft(ω) =


1
2ω if t = 1,

ω if t is odd, t > 1,

1− ω if t is even.

Example 2: Ω = [0, 1], ft(ω) =

{
ω2 if t is odd,

(1− ω)2 if t is even.

Like in Example 1, the best action for a given round i.e. argminωft(ω) fluctuates from 0 to 1. However,
the regret is not large since argminωFt(ω) does not fluctuate.

Question: Let us consider linear losses again, but with FTRL. What type of regularizer should we use?

Example 3: FTRL with Linear Losses

We will revisit the linear losses in the first example (see the previous lecture note),

ft(w) =


1
2w if t = 1

w if t is odd, t > 1

1− w if t is even

and

Ft(w) =

t∑
s=1

fs(w) =

{
1
2w + t−1

2 if t is odd

− 1
2w + t

2 if t is even

but this time we add a regularizer to stabilize the fluctuations. Since quadratic losses achieved small regret,
let us try regularizer Λ(w) = 1

η (w−
1
2 )

2 (η will be chosen later). We define ft same as in example 1, namely:

∀w ∈ Ω = [0, 1]:

ft(w) =


1/2w if t = 1

w if t is odd, t > 1

1− w if t is even

Then we have Ft(w) with parameter η to be specified later:

Ft(w) =

t∑
s=1

fs(w) + Λ(w) =

{
1
2w + t−1

2 + 1
η (w −

1
2 )

2 if t is odd
1
η (w −

1
2 )

2 − 1
2w + t

2 if t is even
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Hence we got:

wt = arg min
w∈[0,1]

Ft−1(w) =

{
1
2 + η

4 if t is odd
1
2 −

η
4 if t is even

Then we have the following upper bound on the regret. Define

B := max
w∈[0,1]

1

η
(w − 1

2
)2 − min

w∈[0,1]

1

η
(w − 1

2
)2 =

1

4η

We have:

RT ≤
T∑

t=1

ft(wt)− ft(wt+1) +B

=
∑
t odd

(
1

2
+

η

4

)
−
(
1

2
− η

4

)
+
∑
t even

(
1

2
+

η

4

)
−
(
1

2
− η

4

)
+B

=

T∑
t=1

η

2
+

1

4η
=

ηT

2
+

1

4η

Next, we choose optimal η = 1√
T
. Based on the regret’s upper bound we just showed, we have:

RT ∈ O(
√
T )

Take-aways from the Examples

Some key insights from the examples above:

• Linear functions have bad behaviour in FTL due to the instability of the chosen wt

• Strong convexity in the loss function helps stabilize the algorithm

• We should add a ”nice” regularizer to stabilize oscillations (”nice” means strong convexity here)

• The choice of regularization parameter η is crucial for achieving optimal regret bounds

• With proper regularization, we can achieve O(
√
T ) regret even with linear losses

1 FTRL with convex losses and strongly-convex regularizers

We can now state our main theorem for FTRL with convex losses and strongly-convex regularizers.

Theorem 1. Suppose ft is convex for all t and Λ(w) = 1
ηλ(w) where η > 0 and λ is 1-strongly convex with

respect to some norm || · ||. Let || · ||∗ be the dual-norm of || · ||, and let gt ∈ ∂f(wt), where wt was chosen
by FTRL. Then,

RT (FTRL, f)
∆
=

T∑
t=1

ft(wt)−min
w∈Ω

T∑
t=1

ft(w)

≤ 1

η

(
max
w∈Ω

λ(w)−min
w∈Ω

λ(w)

)
+ η

T∑
t=1

||gt||2∗
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Proof: Recall the following bound for FTRL. For all u ∈ Ω,

T∑
t=1

ft(ωt)−
T∑

t=1

ft(u) ≤ λ(u)−min
ω∈Ω

λ(ω) +

T∑
t=1

(ft(ωt)− ft(ωt+1)).

We will apply this theorem with u← ω∗ ∈ argminω∈Ω

∑T
t=1 ft(ω). We have,

RT (π, f) ≜
T∑

t=1

ft(ωt)−
T∑

t=1

ft(ω∗)

≤ 1

η

(
λ(ω∗)−min

ω∈Ω
λ(ω)

)
+

T∑
t=1

(ft(ωt)− ft(ωt+1))

It is sufficient to show (ft(ωt)− ft(ωt+1)) ≤ η∥gt∥2∗. By convexity, as gt ∈ ∂ft(ωt), we have

ft(ωt+1) ≥ ft(ωt) + g⊤t (ωt+1 − ωt)

Hence, by Hölder’s inequality, we have

ft(ωt)− ft(ωt+1) ≤ g⊤t (ωt − ωt+1) ≤ ∥ωt+1 − ωt∥∥gt∥∗

Now, denote Ft(ω) =
∑t

s=1 fs(ω) +
1
ηλ(ω). We have that Ft is 1

η -strongly convex, as λ is 1-strongly
convex and ft’s are convex. Note:
(i) Ft is

1
η -strongly convex.

(ii) If ω∗ = argminω∈Ω f(ω), where f is α-strongly convex, then f(ω) ≥ f(ω∗) +
α
2 ∥ω − ω∗∥22.

(iii) ft(ωt)− ft(ωt+1) ≤ ∥ωt+1 − ωt∥∥gt∥∗
Recall, in FTRL, we have ωt = argminω Ft−1(ω). Therefore, ωt+1 minimizes Ft and ωt minimizes Ft−1.

Using (i), (ii) we have,

Ft−1(ωt+1)− Ft−1(ωt) ≥
1

2η
∥ωt − ωt+1∥2,

Ft(ωt)− Ft(ωt+1) ≥
1

2η
∥ωt − ωt+1∥2.

Summing both sides we have, ft(ωt)− ft(ωt+1) ≥ 1
η∥ωt − ωt+1∥2.

(i) ft(ωt)− ft(ωt+1) ≤ ∥ωt+1 − ωt∥∥gt∥∗.
(ii) ft(ωt)− ft(ωt+1) ≥ 1

η∥ωt − ωt+1∥2.
Therefore,

(i), (ii)⇒ ∥ωt − ωt+1∥2 ≤ η(ft(ωt)− ft(ωt+1)) ≤ η∥ωt+1 − ωt∥∥gt∥∗ (iii)

⇒ ∥ωt − ωt+1∥ ≤ η∥gt∥∗
(i), (iii)⇒ ft(ωt)− ft(ωt+1) ≤ η∥gt∥2∗

Now that we have proved the theorem, we can state a corollary for Theorem 1 that is a more useful form
of the result.

Corollary 1. Suppose max
w∈Ω

λ(w)−min
w∈Ω

λ(w) ≤ B and ||gt||∗ ≤ G ∀t. Then, choosing η =
√

B
TG2 , we have

RT ≤
B

η
+ ηTG2 ∈ O(G

√
BT ).
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Remark The corollary gives a good intuition about the rate when the regularizer is bounded by some
quantity. Note that the condition ||gt||∗ ≤ G ∀t here means that ft is G-Lipschitz in || · ||∗-norm.

Let us now look at examples with some strongly convex regularizers.
Example 2 (Linear Losses). Let Ω = {w | ||w||2 ≤ 1} and ft(w) = wT ℓ2 where ||ℓt||2 ≤ 1 (element-wise).
We will apply FTRL result with λ(w) = 1

2 ||w||
2
2 which is 1-strongly convex in || · ||2. We will compute the

best action on round-t as follows:

wt = argmin
w∈Ω

t−1∑
s=1

fs(w) + Λ(w)

= argmin
w∈Ω

wT

(
t−1∑
s=1

ℓs(w)

)
+

1

2η
||w||22

(Multiplying with 2η and completing the square)

= argmin
w∈Ω
||w||22 + 2ηwT

(
t−1∑
s=1

ℓs

)
+ η2

(
t−1∑
s=1

ℓs(w)

)2

= argmin
w∈Ω
||w + η

t−1∑
s=1

ℓs(w)||2

We should choose wt = projΩ

(
−η
∑t−1

s=1 ℓs(w)
)
. This can be implemented via the following iterative scheme

in O(1) time:

u0
∆
= 0

ut ←− ut−1 − ηℓt−1

wt ←− argmin
w∈Ω
||w − ut||2

So the Regret satisfies the following bound:

RT (FTRL, ℓ) ≤ 1

η

(
1

2
||w⋆||22 −min

w∈Ω

1

2
||w||22

)
+ η

T∑
t=1

||ℓt||22

=
1

η
(
1

2
· 1− 0) + η

T∑
t=1

||ℓt||22 (∵ 0 ≤ ||w||2 ≤ 1 ∀ w ∈ Ω)

≤ 1

2η
+ η · T (∵ ||ℓt||2 ≤ 1 ∀ t)

∈ O(
√
T )

(
if η =

1√
T

)
Example 3 (Online Gradient Descent). Let ft be differentiable1 ∀t and Ω be a compact, convex set. We
can apply FTRL with any regularizer that is 1-strongly convex in some norm || · || with the following rule:

wt ∈ arg min
w∈Ω

t−1∑
s=1

fs(w) +
1

2η
||w||22

Here we can notice that though this scheme gives us good regret rates, computing a new gradient ∇ft(w)
in each iteration gives us a complexity that grows linearly in t. However we would ideally like a constant

1We don’t actually need this assumption. We are using it for simplicity in this class.
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cost method. So, we will take a different perspective to circumvent this issue. We will start by rewriting the
regret as follows:

RT (π, {ft}Tt=1) =

T∑
t=1

ft(wt)−min
w∈Ω

T∑
t=1

ft(w)

= max
w∈Ω

(
T∑

t=1

[ft(wt)− ft(w)]

)

≤ max
w∈Ω

(
T∑

t=1

∇fT
t (wt)(wt − w)

)
(
∵ ft is convex ⇐⇒ ft(w) ≥ ft(wt) + (w − wt)

T∇ft(wt) ∀w ∈ Ω
)

=
T∑

t=1

wT
t ∇ft(wt)−min

w∈Ω

T∑
t=1

wT∇ft(wt)

= RT

π, {∇ft(wt)}Tt=1︸ ︷︷ ︸
abuse of notation

2


We can see that these are Linear Losses with ℓt = ∇ft(ωt) We can now apply FTRL on the linear losses

f̃t(w)
∆
= wT∇ft(wt) with λ(w) = 1

2 ||w||
2
2 as shown below:

wt = argmin
w∈Ω

(
wT

(
t−1∑
s=1

∇fs(ws)

)
+

1

2η
||w||22

)

= argmin
w∈Ω
||w + η

t−1∑
s=1

∇fs(ws)||2 (by completing the squares)

Hence, wt will be the ℓ2-projection of −η
∑t−1

s=1∇fs(ws) to Ω, which can be implemented in O(1)-time3 at
each round-t as follows:

ut ←− ut−1 − η∇ft−1(wt−1)

wt ←− arg min
w∈Ω
||w − ut||2 (1)

Now, we can show that
RT (π, {ft}Tt=1) ≤ RT (π, {∇ft(wt)}Tt=1)

≤ B

η
+ ηTG2 (By Theorem 1)

∈ O(G
√
BT )

(
if η =

√
B

TG2

) (2)

where B = max
w∈Ω

λ(w)−min
w∈Ω

λ(w) and ||∇ft(wt)||2 ≤ G ∀t.

Remark Some connections that we can make a note of:

• If we fix the function ft = f and we want to find its minimum ω⋆ = argminω∈Ω f(ω), this is similar to

2We mean wT
t ∇ft(wt) here

3We are not considering how this scales with the dimensionality, d, of Ω ⊆ Rd at the moment
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the standard Projected Gradient Descent (PGD) step:

ut ←− wt−1 − η∇f(wt−1)

wt ←− arg min
w∈Ω
||w − ut||2

We can also obtain the following guarantee for the PGD step:

min
wt

f(wt)− f(w∗) ≤
1

T

(
T∑

t=1

f(wt)− f(w∗)

)
(∵ min ≤ avg.)

∈ O

(
G

√
B

T

)
Note that this need not necessarily be an optimal bound. We are simply showing an application of
Theorem 1 to a convex optimization problem.

• In machine learning, update rule defined in Equation 1 is similar to the (projected) Stochastic Gradient
Descent (SGD) update where ft is the loss for instance (xt, yt)

Example 4 (Experts Problem - Revisited). Here we have Ω = ∆K = {p ∈ RK
+ , 1T p = 1}, and ft(p) =

ℓT p, ℓt ∈ [0, 1]K . Lets consider K ≥ 2.
Let’s try FTRL with λ(w) = 1

2 ||w||
2
2. Doing the same calculations as in the Example above, we get the

following regret bound:

RT (FTRL, ℓ) ≤ B

η
+ η

T∑
t=1

||ℓt||22

Note that B = max
w∈Ω

λ(w)−min
w∈Ω

λ(w) =
1

2

(
1− 1

K

)
≤ 1

2
(∵ K ≥ 2)

and that ||ℓt||22 ≤ K (∵ ℓt ∈ [0, 1]K)

∴ RT (FTRL, ℓ) ≤ 1

2η
+ ηKT

∴ RT (FTRL, ℓ) ∈ O(
√
KT )

(
for η =

√
1

KT

)
When comparing the regret bounds derived in the Example above with that of Hedge as derived in

previous lectures, we can see that Hedge has a tighter bound:

RT ∈ O(
√
T logK)

The issue is that we are not accurately capturing the geometry of the problem here. That is, ℓ2-norm
hypercube scales with K, whereas, say, ℓ∞-norm for [0, 1]K would remain a constant. So, we would want to
use a regularizer that is strongly convex in some norm other than ℓ2-norm; for instance, the ℓ1-norm.

We can try the negative entropy as a regularizer,

λ(p) = −H(p) =

K∑
i=1

p(i) log(p(i))

Recall that λ(p) is 1-strongly convex in || · ||1 We will continue this approach in the next lecture.
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