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In this lecture we will continue where we left off in the previous lecture, by looking at the Experts problem
but using negative entropy as the regularizer for the FTRL method.

Example 3: Experts Problem Revisited (FTRL)

This time around, we consider using the negative entropy as a regularizer,

λ(p) = −H(p) =

K∑
i=1

p(i) log(p(i))

owing to the fact that a quadratic regularizer does not capture the geometry of the problem. Recall that
λ(p) is 1-strongly convex in || · ||1. We can then bound our regret over T rounds in the following way,

RT ≤
1

η

(
max
ω

λ(ω)−min
ω

λ(ω)
)
+

T∑
t=1

||gt||⋆

≤ 1

η

(
max
ω

H(ω)︸ ︷︷ ︸
≤log(K)

−min
ω

H(ω)
)
+

T∑
t=1

||ℓt||∞︸ ︷︷ ︸
≤1

≤ log(K)

η
+ ηT ∈ O(

√
T log(K))

(
for η =

√
log(K)

T

)

Given we have the bound, we can also derive the update rule for the problem,

pt = argmin
p ∈∆([K])

(
t−1∑
s=1

l⊤s p+
1

η

K∑
i=1

p(i) log(p(i))

)
Since p is drawn from a simplex, we can frame this as the following optimization problem,

minimize
p

t−1∑
s=1

l⊤s p+
1

η

K∑
i=1

p(i) log(p(i)) s.t. 1⊤p = 1, p ≥ 0

We can now solve this by writing down its Lagrangian for the equality constraint and verify that the
solution is non negative.

L =

t−1∑
s=1

l⊤s p+
1

η

K∑
i=1

p(i) log(p(i)) + µ(p⊤1− 1)
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And we solve the Lagrangian by taking its derivative and setting it to 0, solving for p(i),

∂L
∂p(i)

=

t−1∑
s=1

ls(i) +
1

η
(1 + log(p(i))) + µ = 0

=⇒ pt(i) = e−ηµ exp(−η
t−1∑
s=1

ls(i))

(Here we know that
∑
i

p(i) = 1)

=⇒ pt(i) =
exp(−η

∑t−1
s=1 ls(i))∑K

j=1 exp(−η
∑t−1

s=1 ls(j))

Which is precisely the Hedge algorithm, an interesting result of using negative entropy as a regularizer
for the experts problem.

1 Follow the Perturbed Leader

Lets now look at a different variation of follow the leader, ie Follow the perturbed leader FTPL that does
not use a regularizer but creates a perturbed loss function which is then also used to optimize the weight
vector at all time steps. Consider a time horizon T and a distribution D. We now want to sample a function
f0 ∼ D. And when we compute the optimal weight ω at time step t, we choose,

ωt = argmin
ω∈Ω

t−1∑
s=0

fs(ω)

Remark Note here that this f0 is the perturbation, and this function needs to be sampled in every round
and included in the optimization problem associated with ω, and hence the index for the summation above
begins with 0.

For the rest of this topic, we assume an oblivious adversary, for the sake of simplicity. The change
involved with an adaptive adversary is that we need to sample f0 ∼ D on every round.

1.1 A comparison with FTRL

We can now compare FTPL with the method we previously studied. While FTRL is deterministic, in that the
regularizer has no randomness associated with it, while FTPL has an inherent stochasticity in its approach
due to the sampling of f0 from D. In cases where the function f0 is close to, or ”looks like” all the ft’s, the
optimization for FTPL can be simpler. However, the choice of D here, is not entirely straightforward, which
makes the performance of these techniques depends on the specific use case being analysed. Let us look at
an example of how FTPL changes the formulation of the optimization problem.

Example 1 (Online Linear Optimization in a Convex Polytope). Let ft(ω) = ℓ⊤t ω be linear and Ω = {ω :
Aω ≤ b} where A ∈ RN×d, b ∈ RN .
Say we run FTRL with a quadratic regularizer Λ(ω) = 1

2η ||ω||
2
2. Then we can see from an example in a

previous lecture that we choose ωt as,

ωt = argmin
ω∈Ω

(
t−1∑
s=1

ω⊤ℓs +
1

2η
||ω||22

)
= argmin

ω∈Ω
||ω + η

t−1∑
s=1

ℓt||2
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And this solution can be implemented with the following iterative scheme,

ut ←− ut−1 + ηℓt−1

wt ←− argmin
w∈Ω
||ω − ut||22

This projection operation, while still a convex optimization problem, can be computationally expensive
in a polytope. Let us now try FTPL here. We will sample ℓ0 ∼ D (For some appropriately chosen D). So for
each round, our selection of ωt can be written as,

ωt = argmin
ω∈Ω

(
t−1∑
s=0

ℓ⊤s ω

)
And this can be implemented using a simple Linear program, which is computationally cheaper than a

projection, given by,

min
ω

ω⊤

[
t−1∑
s=0

ℓs

]
s.t. Aω ≤ b

Remark Intuitively, FTPL can be viewed as ”fooling” the adversary with the randomness in the loss ℓ0

2 A preliminary bound for FTPL

In this section we will write an initial bound for the regret RT when using FTPL and prove it.

Lemma 1. let f = (f1, . . . , fT ) be a sequence of losses. Then FTPL satisfies,

RT (π
FTPL, f) ≜ E

[
T∑

t=1

ft(ωt)

]
−min

ω∈Ω

T∑
t=1

ft(ω)

≤
T∑

t=1

E
[

ft(ωt)− ft(ωt+1)︸ ︷︷ ︸
Fluctuations in the loss

]
+ E

[
max
ω∈Ω

f0(ω)−min
ω∈Ω

f0(ω)

]

Remark Here the expectation is w.r.t. f0 ∼ D. This lemma does not assume convexity of Ω, ft,Λ. And
note that we consider an oblivious adversary here.

Proof: Recall the following bound for FTRL. For all u ∈ Ω,

T∑
t=1

ft(ωt)−
T∑

t=1

ft(u) ≤ λ(u)−min
ω∈Ω

λ(ω) +

T∑
t=1

(ft(ωt)− ft(ωt+1)).

For a given f0, let us apply the above lemma with Λ = f0 (setting the regularizer as our perturbation)

and u = ω⋆ = argminω∈Ω

∑T
t=1 ft(ω), the best action in hindsight.

T∑
t=1

ft(ωt)−
T∑

t=1

ft(ω⋆) ≤ f0(ω⋆)−min
ω∈Ω

f0(ω) +

T∑
t=1

(ft(ωt)− ft(ωt+1))

The claim follows by noting that f0(ω⋆) ≤ maxω∈Ω f0(ω) and taking an expectation on both sides.
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3 FTPL for experts problem

We will apply FTPL with f0(·) = ℓ⊤0 (·), and where ℓ0(a) ∼ D(η) for all a ∈ [K]. On round t we will choose

pt ∈ argminp∈∆([K])

∑t−1
s=0 p

⊤ℓt, which is equivalent to choosing At ∈ argmina∈[K]

∑t−1
s=0 ℓt(a).

This gives rise to the following algorithm:

• Given: time horizon T , parameter η

• Sample ℓ0(a) ∼ D(η) for a ∈ [K]. ℓ0 ∼ D

• for t = 1, . . . , T , At ← argmina∈[K]

∑t−1
s=0 ℓs(α̇), ωt = argminω∈Ω

∑t−1
s=0 fs(ω)

For all a, we will sample ℓ0(a) = −Z(a) where Z(a) ∼ Geom(η).

3.1 Geometric distribution and related property

The Geom (η) distribution: the distribution of the number Z of Bern(η) coin flips to get the first 1 .

pmf: for k ∈ {1, 2, . . .} p(k) = P(Z = k) = (1− η)k−1η.

Some useful properties: 1. P(Z ≥ k + 1 | Z ≥ k) = P(Z≥k+1,Z≥k)
P(Z≥k) = P(Z≥k+1)

P(Z≥k) = (1−η)k

(1−η)k−1 = 1− η. 2. Let

Z(a) ∼ Geom(η) for a ∈ [K]. Then

E [∥Z∥∞] = E
[
max
a∈[K]

Z(a)

]
≤ 1 +

HK

η
, where, HK = 1 +

1

2
+ · · ·+ 1

K

3.2 FTPL for experts: negative geometric perturbation (cont’d)

Note that for the experts problem ω ∈ ∆([K]) is such that ωt(a) = 1 (At = i). Moreover,

max
ω∈∆([K])

f0(ω) = max
ω∈∆([K])

ℓ⊤0 ω = max
a∈[K]

ℓ0(a), min
ω∈∆([K])

f0(ω) = min
a∈[K]

ℓ0(a)

we have,

RT

(
πFTPL, f

)
≤

T∑
t=1

E [ℓ0 (At)− ℓ0 (At+1)] + E
[
max
a∈[K]

ℓ0(a)− min
a∈[K]

ℓ0(a)

]
Let us first bound the second term. Recall that ℓ0(a) = −Z(a) where Z(a) ∼ Geom(η). As Z(a) ≥ 1, we

have
max

a
ℓ0(a) = max

a
−Z(a) ≤ −1, −min

a
ℓ0(a) = max

a
Z(a) = ∥Z∥∞

Therefore,

E
[
max
a∈[K]

ℓ0(a)− min
a∈[K]

ℓ0(a)

]
≤ −1 + E [∥Z∥∞] ≤ −1 + 1 +

HK

η
=

HK

η

Let us now bound the first term. Shortly, we will prove the following claim.

Claim 1. P (At+1 = a | At = a) ≥ 1− η for all a ∈ [K], where P is with respect to ℓ0.

Then, we can write

E [ℓt (At)− ℓt (At+1)] = E[ℓ0 (At)− ℓ0 (At+1)︸ ︷︷ ︸
=0

| At = At+1]P (At = At+1)+

E[ℓ0 (At)− ℓ0 (At+1)︸ ︷︷ ︸
≤1 as ℓt∈[0,1]K

| At ̸= At+1]P (At ̸= At+1)

≤ P (At ̸= At+1) =

K∑
a=1

P (At+1 ̸= a | At = a)︸ ︷︷ ︸
≤η

P (At = a) ≤ η.
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RT

(
πFTPL, f

)
≤

T∑
t=1

E [ℓ0 (At)− ℓ0 (At+1)]︸ ︷︷ ︸
≤η

+E
[
max
a∈[K]

ℓ0(a)− min
a∈[K]

ℓ0(a)

]
︸ ︷︷ ︸

≤HK/η

Therefore,

RT ≤ ηT +
HK

η

= 2
√
THK By choosing η =

√
HK/T

∈ O(
√
T log(K)).

We will now prove the Claim 1.
Proof Recall that ℓ0(a) = −Z(a) where Z(a) ∼ Geom(η). Let a be given. We will show that for every
realization of {Z(j)}j ̸=a, we have

P (At+1 = a | At = a, {Z(j)}j ̸=a) ≥ 1− η =⇒ P (At+1 = a | At = a) ≥ 1− η

Fix the values of {Z(j)}j ̸=a. First observe,

At = a⇐⇒
t−1∑
s=0

ℓs(a) =

t−1∑
s=1

ℓs(a)− Z(a) ≤
t−1∑
s=1

ℓs(j)− Z(j) ∀j ̸= a

Now define Lt−1(j) ≜
∑t−1

s=1 ℓs(j) and Jt−1 ≜ minj ̸=a (Lt−1(j)− Z(j)). Therefore,

At = a⇐⇒ Z(a) ≥ Lt−1(a)− Jt−1

Now let us consider At+1 = j. We can write,

At+1 = a⇐⇒
t∑

s=0

ℓs(a) =

t∑
s=1

ℓs(a)− Z(a) ≤
t∑

s=1

ℓs(j)− Z(j) ∀j ̸= a

⇐⇒ Z(a) ≥ Lt−1(a) + ℓt(a)−

(
t−1∑
s=1

ℓs(j) + ℓt(j)− Z(j)

)
∀j ̸= a

⇐⇒ Z(a) ≥ Lt−1(a)−

(
t−1∑
s=1

ℓs(j)− Z(j)

)
︸ ︷︷ ︸

≥Jt−1

+ ℓt(a)− ℓt(j)︸ ︷︷ ︸
≤1 as ℓt∈[0,1]

∀j ̸= a

⇐⇒ Z(a) ≥ Lt−1(a)− Jt−1 + 1

We therefore have,

P (At+1 = a | At = a, {Z(j)}j ̸=a)

≥ P (Z(a) ≥ Lt−1(a)− Jt−1 + 1 | Z(a) ≥ Lt−1(a)− Jt−1, {Z(j)}j ̸=a) = 1− η

Hence, P (At+1 = a | At = a) ≥ 1− η.
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