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In this lecture we will be looking at FTPL with Laplace Perturbation.

1 FTPL for experts: Laplace perturbation

1.1 FTPL for the experts problem

• Given: time horizon T , parameter η

• Sample ℓ0(a) ∼ D(η) for a ∈ [K]. ℓ0 ∼ D

• for t = 1, . . . , T ,

• At ← argmina∈[K]

∑t−1
s=0 ℓs(a). ωt = argminω∈Ω

∑t−1
s=0 fs(ω)

We will now try D(η) = Lap(1/η).
The Lap(1/η) distribution has pdf ψ:

ψ(z) =
η

2
e−η|z|

1.2 Maximum of K i.i.d Laplace RVs

Let Z = (Z(1), . . . , Z(K)) where Z(i) ∼ Lap(1/η),

E[∥Z∥∞] =

∫ ∞

0

P (∥Z∥∞ ≥ t)dt by identity below.

=

∫ a

0

P (∥Z∥∞ ≥ t)≤1dt+

∫ ∞

a

P (∥Z∥∞ ≥ t)=P (∃i,|Z(i)|≥t)dt ≤ a+
K∑
i=1

∫ ∞

a

P (|Z(i)| ≥ t)dt

We have that,

P (|Z(i)| ≥ t) =
∫ ∞

t

η

2
e−ηz +

∫ −t

−∞

η

2
eηz = e−ηt.

Therefore, choosing a = 1
log(K) , we have

E[∥Z∥∞] ≤ a+ K

η
e−ηa ≤ 1

η
(1 + log(K)).

A common trick: For Z ≥ 0, E[Z] =
∫∞
0
zp(z)dz =

∫∞
0
p(z)

∫ z

0
dvdz =

∫∞
0

∫∞
v
p(z)dzdv =

∫∞
0
P (Z ≥ v)dv
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1.3 FTPL Lemma and Analysis

Lemma 1 (FTPL). Let f = (f1, . . . , fT ) be a sequence of losses. Then FTPL satisfies,

RT (πFTPL, f) ≤
T∑

t=1

E[ft(ωt)− ft(ωt+1)] + E
[
max
Ω

f0(ω)−min
Ω
f0(ω)

]
Using a similar argument as before (i.e for geometric perturbation), we have

RT (πFTPL, f) ≤
T∑

t=1

E[ℓ0(At)− ℓ0(At+1)] + E
[
max
a∈[K]

ℓ0(a)− min
a∈[K]

ℓ0(a)

]
We showed this exact same step for Geometric perturbation. Let us first bound the second term. By

symmetry of the Laplace distribution,

E
[
max
a∈[K]

ℓ0(a)− min
a∈[K]

ℓ0(a)

]
= 2E

[
max
a∈[K]

ℓ0(a)

]
≤ 2

η
(1 + log(K)).

To bound the first term, we will use the following claim.

Claim 1. P (At = a) ≤ eηP (At+1 = a) for all a ∈ [K], where P is w.r.t ℓ0.

Note: η > 0, so RHS is bigger. But, η will also be small, so it says that your distribution round t + 1
does not change from t.

We therefore have,

E[ℓt(At)− ℓt(At+1)] =

K∑
a=1

ℓt(a)P (At = a)−
K∑

a=1

ℓt(a)P (At+1 = a)

=

K∑
a=1

ℓt(a)(P (At = a)− P (At+1 = a))

≤
K∑

a=1

ℓt(a)≤1(1− e−η)≤ηP (At = a)≤ η.

Now we bound both terms of

RT (πFTPL, f) ≤
T∑

t=1

E[ℓ0(At)− ℓ0(At+1)]︸ ︷︷ ︸
≤η

+E
[
max
a∈[K]

ℓ0(a)− min
a∈[K]

ℓ0(a)

]
︸ ︷︷ ︸

≤ 2
η (1+log(K))

Therefore the regret can be bounded,

RT ≤ ηT +
2

η
(1 + log(K))

= 3
√
T (1 + log(K))

∈ O(
√
T log(K))

by choosing η =
√
(1 + log(K))/T
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1.4 Proof of claim 1

It remains prove the claim 1 above. Let a be given. Let ψ be the pdf of ℓ0. Therefore,

ψ(ℓ0) =

K∏
j=1

η

2
e−η|ℓ0(j)| =

ηK

2K
e−η∥ℓ0∥1 .

We can write,

P (At = a) =

∫
RK

1

(
a = argmin

j∈[K]

t−1∑
s=0

ℓs(j)

)
ψ(ℓ0)dℓ0.

Let ℓat ∈ [0, 1]K such that ℓat (j) = 1(j = a)ℓt(a). That is ℓ
a
t = [0, . . . , ℓt(j), . . . , 0].

Now, let us use the substitution ℓ̃0 = ℓ0 − ℓat . We have,

P (At = a) =

∫
RK

1

(
a = argmin

j∈[K]

ℓ̃0(j) + ℓat (j) +
t−1∑
s=1

ℓs(j)

)
ψ(ℓ̃0 + ℓat )dℓ̃0.

Now we will upper bound ψ(ℓ̃0 + ℓat ) as follows,

ψ(ℓ̃0 + ℓat ) =
ηK

2K
e−η∥ℓ̃0+ℓat ∥1

≤ ηK

2K
e−η∥ℓ̃0∥1+η∥ℓat ∥1

≤ eη η
K

2K
e−η∥ℓ̃0∥1 As ∥ℓat ∥1 = ℓt(a) ≤ 1

= eηψ(ℓ̃0).

Therefore,

P (At = a) ≤ eη
∫
RK

1

(
a = argmin

j∈[K]

ℓ̃0(j) + ℓat (j) +

t−1∑
s=1

ℓs(j)

)
ψ(ℓ̃0)dℓ̃0.

Recall ℓat (j) = 1(j = a)ℓt(a). Therefore, ℓ
a
t (a) = ℓt(a) and ℓ

a
t (j) ≤ ℓt(j) for all j ̸= a.

Hence,

1

(
a = argmin

j∈[K]

ℓ̃0(j) + ℓat (j) +

t−1∑
s=1

ℓs(j)

)
≤ 1

(
a = argmin

j∈[K]

ℓ̃0(j) + ℓt(j) +

t−1∑
s=1

ℓs(j)

)

(Note, if a is the minimizer when you add ℓat , it has to be the case that it minimizes with ℓt as the other
indices are increasing.)

Therefore,

P (At = a) ≤ eη
∫
RK

1

(
a = argmin

j∈[K]

ℓ̃0(j) + ℓt(j) +

t−1∑
s=1

ℓs(j)

)
ψ(ℓ̃0)dℓ̃0

≤ eη
∫
RK

1

(
a = argmin

j∈[K]

t−1∑
s=0

ℓs(j)

)
ψ(ℓ0)dℓ0

= eηP (At+1 = a)
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2 FTPL Summary

2.1 Proof Strategy

FTPL lemma:

RT (πFTPL, f) ≤
T∑

t=1

E[ft(ωt)− ft(ωt+1)] + E[max
Ω

f0(ω)−min
Ω
f0(ω)]

Key steps:

1. Choose D(η) so that E[maxΩ f0(ω)−minΩ f0(ω)] ≤ O( 1η )

2. Show that ωt and ωt+1 have similar distributions

3. Hence argue that E[ft(ωt)− ft(ωt+1)] ≤ O(ηm)

Important notes:

• Proof technique for step 2 can depend on D and the problem instance

• Although high-level intuitions are similar across all FTPL instances, we do not usually have a unified
analysis (like FTRL)

• However, the computational advantages can sometimes make FTPL worthwhile

• FTPL also does not assume convexity of Ω, ft

In fact, Hedge is FTPL with Gumbel perturbation.

3 Online Shortest Paths: A Case Study

3.1 Problem Setting

Given:

• Graph with M edges

• Fixed source and destination vertices

• K possible paths A = {a1, . . . , aK} from source to destination

• Each path aj ∈ {0, 1}M where aj(i) = 1 means edge i is on path aj

• Maximum path length m, i.e., a⊤j 1M ≤ m

On each round:

• Learner chooses path At ∈ A

• Adversary chooses losses ℓt ∈ [0, 1]M for each edge

• Learner incurs loss A⊤
t ℓt, but observes ℓt (losses on all edges)

Application: packet routing in a network.
Regret:

RT (π, ℓ) =

T∑
t=1

A⊤
t ℓt − min

aj∈A

T∑
t=1

a⊤j ℓt
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3.2 Attempt 1: Applying Hedge (FTRL)

• Treat each path in A = {a1, . . . , aK} as an expert, and scale the losses by 1
m

• The regret for the scaled losses will be O(
√
T log(K)). Hence,

RT ∈ O(m
√
T log(K)) ∈ O(m

√
mT log(M/m))

as K ≤
(
M
m

)
∼ (Mm )m

• Per-iteration run time is O(K), which can be large

3.3 Attempt 2: Applying FTPL

Algorithm:

• Given: time horizon T , parameter η

• Sample ℓ0(e) ∼ D(η) for each edge e

• For t = 1, . . . , T :

– Choose path At ← argminaj∈A

∑t−1
s=0 ℓ

⊤
s aj

Run time per iteration:

• Updating losses on each edge (incrementally): O(M)

• Computing shortest path via Dijkstra’s: O(M) (not convex, but still efficient)

• Much cheaper than O(K) where K could be as large as
(
M
m

)
Note: the following proof (idea) is similar to Hedge with Laplace, so you can try them out at home.

3.4 Regret Analysis for FTPL with Online Shortest Paths

Using Laplace perturbations ℓ0(e) ∼ Lap(1/η) for each edge:

RT (πFTPL, f) ≤
T∑

t=1

E[ℓ⊤0 At − ℓ⊤0 At+1] + E[max
a∈A

ℓ⊤0 a−min
a∈A

ℓ⊤0 a]

By symmetry of the Laplace distribution:

E[max
a∈A

ℓ⊤0 a−min
a∈A

ℓ⊤0 a] = 2E[max
a∈A

ℓ⊤0 a] ≤
2m

η
(1 + log(M))

Claim 2. P (At = a) ≤ emηP (At+1 = a) for all a ∈ [K], where P is w.r.t ℓ0.

Final regret bound:

RT ≤ m2ηT +
2m

η
(1 + log(M)) = 3m

√
mT (1 + log(M))

by choosing η =
√
(1 + log(M))/(mT ).

Comparison:

• For Hedge: RT ∈ O(m
√
mT log(M/m))

• Similar regret, but FTPL has O(M) computation per round, while Hedge has O(K), where K could
be as large as

(
M
m

)
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3.5 Proof of Claim 2

Claim 3. P (At = a) ≤ emηP (At+1 = a) for all a ∈ [K], where P is w.r.t ℓ0.

Proof sketch: The proof is similar to Laplace perturbations for Hedge. Let a path aj ∈ A be given. Then:

P (At = aj) =

∫
RK

1(a = argmin
aj∈A

t−1∑
s=0

ℓ⊤s aj)ψ(ℓ0)dℓ0

Define ℓajt ∈ [0, 1]M so that ℓajt(i) = ℓt(i) × aj(i). Use the substitution ℓ̃0 = ℓ0 − ℓat and proceed in a
similar fashion.

4 Learning in Games

Definition: Two-player normal form game.

• In a TPNFG, player 1 has m actions and player 2 has n actions.

• Each player chooses an action (Player 1: a1, Player 2: a2) and receive utility/payoff Q(1)(a1, a2),
Q(2)(a1, a2).

e.g. Rock-paper-scissors, the following table is (Q(1)(a1, a2), Q
(2)(a1, a2)) when two player choose action

R,P,S respectively

P1\P2 R P S
R (0, 0) (−1, 1) (1,−1)
P (1,−1) (0, 0) (−1, 1)
S (−1, 1) (1,−1) (0, 0)
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