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Continuing from the end of last time, we will keep talking about game theory and its connection to
online learning. We will start by introducing two-player normal form game. Then, we will talk about
two solution concepts: Nash equilibrium and Safety strategies. And we will see how we can use online
learning method to establish the proof of Minimax theorem.

Definition 1 (Normal Form Game). In a finite two-player NFG, player 1 has m available actions and player
2 has n available actions. If player 1 chooses a1 ∈ [m] and player 2 chooses a2 ∈ [n], they receive payoffs
Q(1)(a1, a2), Q

(2)(a1, a2) respectively. Here, Q(1), Q(2) ∈ Rm×n.

Example 1 (Rock-Paper-Scissors). Let’s consider the Rock-Paper-Scissors game. The following is the
payoff (or utility) table for Player 1 and Player 2.

(P1,P2) R P S
R (0,0) (-1,1) (1,-1)
P (1,-1) (0,0) (-1,1)
S (-1,1) (1,-1) (0,0)

(Question) How to Choose a Strategy/Action for each player?
Thoughts: A player’s best action depends on the other player’s action.

Example 2 (Deer/Stag Hunt). There are two players, who both go out hunting. Here, two players must
independently choose whether to hunt a deer or a rabbit. Hunting a deer requires both players’ cooperation
to succeed and offers a greater reward, but also carries risk since each hunter depends on the other to commit.
Hunting a rabbit, on the other hand, can be done individually and is less risky but provides a smaller reward.
The following is the reward table:

D R
D (4,4) (0,2)
R (2,0) (1,1)

Example 3 (Driver vs. Inspector). Consider driver and inspector as two opposing players. Driver can
choose to drive “legally” or “illegally”. And inspector can choose “don’t inspect” or “inspect”. The following
is the payoff table:

Don’t Inspect Inspect
Legal (0,0) (0,-1)
Illegal (10,-10) (-90,-6)

Definition 2 (Mixed Strategies). Instead of choosing an action (pure strategy), players can choose distri-
butions over the actions. For example, P1 : x ∈ ∆([m]), P2 : y ∈ ∆([n]). Later, we can think of all strategy
as mixed strategy.
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With above definition, we can consider the expected payoffs of x, y.

P1 : xTQ(1)y P2 : xTQ(2)y

Several solution concepts arise from the strategies of two players. We will look specifically at 2 of them:

• Nash equilibrium

• Safety strategy

Definition 3 (Nash equilibrium). A strategy x for player 1 is a best response to strategy y of player 2, if it
maximizes player 1’s utility. i,e.,

xTQ(1)y ≥ x′TQ(2)y , ∀x′ ∈ ∆([m])

Similarly, for player 2, y is a best response to x if

xTQ(2)y ≥ xTQ(1)y′ , ∀y′ ∈ ∆([n])

A pair (x∗, y∗) is a Nash Equilibrium (NE) if: x∗ is player 1’s best response to y∗ and y∗ is player 2’s
best response to x∗. That is, no player can unilaterally deviate and do better.

Here are some NE choices for previous examples:

1. Rock-Paper-Scissors:
x∗ = y∗ = (1/3, 1/3, 1/3) is a NE.

2. Deer/Stag Hunt:
x∗ = y∗ = (1, 0), (D,D)
x∗ = y∗ = (0, 1), (R,R)
x∗ = y∗ = (1/3, 2/3) is a mixed NE.

3. Driver vs. Inspector:
x∗ = (0.8, 0.2), y∗ = (0.9, 0.1)

Definition 4 (Safety Strategies). Define g1(x)
∆
= miny∈∆([n]) x

TQ(1)y, g2(y) = minx∈∆([m]) x
TQ(2)y. Then

P1 and P2’s safety strategies are:

x∗ = arg max
x∈∆([m])

g1(x) = argmax
x

min
y

xTQ(1)y

y∗ = arg max
y∈∆([n])

g2(y) = argmax
y

min
x

xTQ(2)y

Some safety strategy choice for previous examples:

• RPS:

x∗ = y∗(1/3, 1/3, 1/3)

• Driver vs. Inspector:

x∗ = (1, 0), y∗ = (0, 1)

(Question): When are Safety Strategies always equal to NE ?
Answer: Two-player zero-sum games (TPZSG)
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Definition 5 (Two-player zero sum game (TPZSG)). In a two-player zero-sum-game,

Q(1) = −Q(2) ∆
= Q

• NE in TPZSG:
xTQy ≤ xT

∗ Qy∗ ≤ xT
∗ Qy ∀x ∈ ∆([m]), y ∈ ∆([n])

• Safety strategy in TPZSG:
(1) : x̃ = argmax

x
min
y

xTQy

(2) : ỹ = argmin
y

max
x

xTQy

Interpretation of x̃, ỹ:
P1 has to announce their strategy first. P1 knows P2 will choose argminy x

TQy if she announces x. There-
fore, she will choose:

x̃ = argmax
x

min
y

xTQy

P1’s expected payoff (utility):
(∗) : max

x
min
y

xTQy

Similarly, if P2 announces first, P2’s expected utility is:

−min
y

max
x

xTQy

P1’s expected utility is:
(∗∗) : min

y
max

x
xTQy

The following is a brief argument to show that (∗) ≤ (∗∗):

For any continuous function f(x, y),

g1(x)
∆
= min

y
f(x, y)

g2(y)
∆
= max

x
f(x, y)

If g1 and g2 are also continuous, we have:

min
y

f(x, y) ≤ f(x, y′) ∀y′ ∈ ∆([n])

max
x

min
y

f(x, y) ≤ max
x

f(x, y′) ∀y′

max
x

min
y

f(x, y) ≤ min
y′

max
x

f(x, y′)

We can also show (∗) = (∗∗). We will use the following theorem:

Theorem 4 (Von-Neumann’s MiniMax). In any TPZSG,

(∗) = max
x

min
y

xTQy = min
y

max
x

xTQy = (∗∗)

This value, denoted V (Q), is called the value of the game.

Proof: Since we have shown (∗) ≤ (∗∗) before, we will show (∗) ≥ (∗∗) in the following.
Consider the following multi-round game:
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• On each round, P2 chooses a mixed strategy yt ∈ ∆([n]), via some policy π.

• After this, P1 chooses the best response

xt = arg max
x∈∆([n])

xTQyt

• We will define P2’s regret as

RT (π,E) =

T∑
t=1

xT
t Qyt − min

y∈∆([n])

T∑
t=1

xT
t Qy

where E refers to the estimate: Q, P1’s behavior, what is known to P2.

Claim 1. If there exists a policy π which achieves sublinear regret, then

max
x

min
y

xTQy ≥ min
y

max
x

xTQy

Proof of the claim:
Let x1, ..., xT , y1, ..., yT be the strategies used by both players on each round. Let

x̄ =
1

T

T∑
t=1

xt

ȳ =
1

T

T∑
t=1

yt

min
y

max
x

xTQy ≤ max
x

xTQȳ

= max
x

1

T

T∑
t=1

xTQyt

=
1

T

T∑
t=1

max
x

xTQyt

(by choice/definition of xt) =
1

T

T∑
t=1

xT
t Qyt

=
1

T

(
min

y∈∆([n])

T∑
t=1

xT
t Qy +RT (π,E)

)

= min
y∈∆([n])

x̄TQy +
1

T
RT (π,E)

≤ max
x

min
y

xTQy︸ ︷︷ ︸
(∗∗)

+
1

T
RT (π,E)︸ ︷︷ ︸

→0 as T→∞

(by claim assumption)

So, ∀ϵ > 0, we can find any policy π s.t. R
T ≤ ϵ. Then, (∗) ≤ (∗∗)
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