CS/ECE/STAT-861: Theoretical Foundations of Machine Learning

University of Wisconsin—-Madison, Fall 2025 Instructor: Kirthevasan Kandasamy

Homework 0. Due 09/12/2025, 11.59 pm

Homework 0 serves as a diagnostic tool to assess your background knowledge and mathematical maturity for this
course. It also familiarizes you with course expectations as you advance to more complex topics. While you are not
expected to know all the solutions right away, you should be able to solve most of the questions with reasonable effort,
using references as needed. Future homework assignments will be more challenging than Homework 0.

Instructions:

1.

Homework is due on Canvas by 11:59 pm on the due date. Please plan to submit well before the deadline. Refer
to the course website for policies on late submission.

Homework must be typeset using appropriate software, such as IZI[EX. Handwritten and scanned submissions
will not be accepted.

Your solutions will be evaluated on correctness, clarity, and conciseness.

Unless otherwise specified, you may use any result we have already proved in class. Clearly state which result
you are using.

Solutions to some of the problems may be found in the recommended textbook or other resources. Unless stated
otherwise, you should attempt the problems on your own. You may not search the internet for solutions or use
LLM-based tools.

If you use any external references, please cite them in your submission.

Collaboration: You may collaborate in groups of size up to 3 to solve problems indicated by a star (*). You
may not collaborate on other problems. If you collaborate, please indicate your collaborators at the beginning
of the problem. Even if you collaborate, you must write the solution in your own words.



1 Estimating the mean of a normal distribution

We are given n independent samples S = {X1,...,X,}, where each X; is sampled from a normal distribution
N (11, 02) with unknown mean p, but known variance o2. We wish to estimate the mean p. An estimator 7i : R™ — R
is a function of the data collected. We will quantify the performance of an estimator via the risk R, which is simply
the expected squared error of the estimator,

R(fi, 1) = E[(A(S) = p)?]-
Here, the expectation is with respect to the randomness in the data.
1. [2 pts] (Bias—variance decomposition) First, show that the following holds for any estimator 7,

R(fi, ) = (E[a(S)] = p)* + E[Ga(S) — E[a(S)])?] -

bias variance

2. [2 pts] (Sample mean) The most natural estimator for y is the sample mean Jisy;, defined below.
1 n
usm(S) = — X;.
psm(S) = ;

Using the result of part 1, show that R(fisy, i) = 02 /n.

3. [3 pts] (Concentration) While the risk measures how well an estimator does in expectation, sometimes we also
wish to know that figy is within some margin of error € of the true mean p with high probability. Prove the
following result for any € > 0:

. —ne?
P(lfsm(S) = nl > €) < Zexp ( 55 |-

where the probability PP is with respect to the randomness in the data.
You may use the following facts about normal random variables:
e If X1,..., X, are normal, then so is Z?Zl X;. (You will need to compute the mean and variance.)
e If X are normal, then so is aX for any a € R. (You will need to compute the mean and variance.)
e If Z ~ N(0,1) is a standard normal random variable, then P(Z > ¢) < ¢~ /2, and P(Z < —¢) < e~ /2,
4. [2 pts] (A hypothesis test) Suppose it was known that ;1 € {0, A} for some A > 0. A hypothesis test 1) chooses
either 0 or A based on a dataset S. Consider the following hypothesis test:

A
Choose 1(S) = 0if figm(S) < 5

else choose 1(S) = A.

Let [P, denote probabilities when the true mean is ;. Show that if n > SAL; log(1/9), we have
Po((S) = 0) > 1-6,  Pa(b(S)=A)>1-0,

N.B. This shows that O (02A*2 log(1/d )) samples are sufficient to separate two normal distributions that are

A apart. In class, we will show that at least 2 (0'2A72 log(1/ 5)) samples are also necessary.

5. [2 pts] (An alternative estimator) The sample mean is just one of several possible estimators for p. Student A
proposes the following alternative estimator fi,, with some parameter « € (0, 1),

fa(8) == Xi.
=1

Using the result from part 1, compute the risk of the estimator ji,. Note that, unlike the sample mean, the risk
of /i, depends on the true mean .



6. [2 pts] Show that there exists at least one value for u such that [, is a strictly better estimator than figy;. That
is, there exists 1 € R, such that, for all &« € (0, 1), we have R(fiq, 1) < R(fsm, 1)

7. [4 pts] (Maximum risk) Despite the result from part 6, student B is not satisfied with student A’s proposition, as
an estimator should perform well for all values of y, and not just for one value of u. In particular, she argues
that the worst-case risk over all y should be small. She proposes the following criterion, the maximum risk R,
as a way to measure how well an estimator performs.

R(7) = sup R(A, p) = sup E[(7 — )?].
pER neER

(a) Compute R(fzgn) and R(fiq)-
(b) Based on the above answers, which estimator would you choose?

8. [5 pts] (Maximum risk over a bounded domain) Suppose we had prior knowledge that 1 € [0, 1]. While student
A agrees with student B’s criterion, she argues that we should modify the definition of the maximum risk to
incorporate this prior knowledge. She proposes the following definition instead:

R'(fi) = sup R(fi,p) = sup E[(7i— p)?].
uefo.1] nef.1]

(a) Compute R(fisn) and R(fi, ), the maximum risk for the two estimators discussed above.
(b) TIs there any particular value of « (possibly dependent on n and o) for which R’ (fi,) < R'(fism)?

(c) Based on the above answer, which estimator would you choose? Intuitively, explain the discrepancy in the
conclusions in part 7 and part 8.

N.B. In class, we will study minimax optimality, where our goal is to design algorithms with the smallest
maximum risk across a class of distributions. We will begin with simple mean estimation problems, and then
apply these techniques to regression, classification, density estimation, online learning, and bandits throughout
the course.

2 Understanding exploration—exploitation trade-offs *

Consider the following game which proceeds over 7' rounds. You have access to two normal distributions v(!) =
N (p1,0?) and v® = N(uz,0?), where o2 is known but y1, iz € [0,1] are not. On each round ¢, you have the
opportunity to earn a monetary reward by drawing a sample from either distribution. You choose I; € {1, 2}, where
I; = i corresponds to drawing a sample X; from v; = N(u;, 02), and earning $X;. If X; < 0, you should pay that
amount instead. Your total cumulative reward, over 7" rounds is Zthl X:. We will measure how well we perform via
our average regret, defined below:

T
1
Ry = max{pu, uo} — T th'
t=1

We wish to design an algorithm whose average regret vanishes' with 7" in expectation, i.e E[R7] — 0 as T' — oo.

Algorithm: A student proposes the following simple algorithm. First sample each of the distributions /N times (where
N < T/2). Then, for the remaining 7' — 2N rounds, sample the distribution with the highest observed sample mean

Untuitively, if we knew @ priori which mean was larger, we will always pull the arm with the highest mean and have E[Rr] = 0 as
%E[Zt X¢] = max{p1, po}. X E[Rp] — 0, this means we are able to learn which of the two distributions has a larger mean and converge
towards the correct answer as we collect more samples.



using the IV samples. That is, I; is chosen as follows:

1 ift <N,
;)2 ifN+1<t<2N,
"T)1 0 ift>2Nand iy > fio,
2 if t > 2N and ﬁl < ﬁg.
1 N 1 2N
where,m:NZXt, MQ:N Z X,
t=1 t=N+1

For what follows, let A = |1 — 2| denote the gap between the two means.
1. [5 pts] (Regret decomposition) Establish the following identity for the expected average regret:

NA T —2N)A N

Here, ®(x) = Pzar(0,1)(Z < ) is the CDF of the standard normal distribution.

2. [2 pts] Using the result from part 1 and the fact that uq, e € [0, 1], show the following upper bound on the
expected average regret.

N —~NA?

402
3. [3 pts] Use the result in part 2 to show the following upper bound.

N
E[Rr] < — + CL where, C' = v/2e~1/2,

T YUN

Hint: Consider the function f(x) = log(z) — ax?, where v > 0. What is the maximizer of f?

4. [2 pts] (An optimal choice of N.) Specify a choice for N, depending only on ¢ and 7', so that the upper bound
in part 3 is minimized. Are you able to achieve E[Rr] — 0as T — oo? If so, at what rate does it go to zero?

5. [2 pts] (Exploration—exploitation trade-off.) Let N* denote the optimal choice in part 4. In words, explain what
would happen had we chosen N < N* or N > N*.

N.B. Later in class, we will study several models for adaptive decision-making. The model discussed in this question
is an example of a stochastic bandit, which is one paradigm for decision-making. In bandit settings, we often have to
trade-off between exploration (learning about the environment) and exploitation (leveraging what we have learned to
maximize rewards). The above algorithm is a simple, albeit sub-optimal, approach that separates exploration (the first
2N rounds) from exploitation (the remaining 7" — 2N rounds). In class, we will look at better algorithms to manage
this trade-off which have faster rates of convergence.

3 Short questions from Chapter 0

3.1 Basic inequalities
1. [5 pts] Let é = 0. Show that the following statements are true for all z € R% and p, g suchthat 1 < p < ¢ < oo:

. - 1
(i) [lzllq < ll2llp, and (ii) MHx”p < m”w”q'
Hint. Consider using Holder’s inequality for (ii).

2. [2pts]Let B, = {z;||z|l, < 1} andlet gp = {x; d_l/p||x||p < 1}. Draw a picture illustrating 81, Bz, Boo, Bvl,gg,goo
in R?, all in the same figure.



3.2

1.

3.3

Bayesian inference
[3 pts] Let a parameter of interest y have prior distribution p ~ N (ug,72). Given p, we observe S =

{X1,...,X,} with independent draws X; ~ N(u,o?) (with known o?). Find the posterior distribution of
1 given S.

Covering and packing numbers

. [4 pts] (Packing-covering sandwich) Let X be a set and let p be a pseudo-metric defined on X. Show that for

any € > 0and A C X, we have M (2¢, A, p) < N(c,A,p) < M(e, A, p).

[2 pts] Let A C R% and € > 0. Let Ny(e, A) = N (e, A, dl—l/pH -||p) denote the covering number under the
metric p(z,y) = 75|12 — yl|p. Show that, N1(A,€) < Na(A,€) <--- < Noo(4A, ).
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