
CS/ECE/STAT-861: Theoretical Foundations of Machine Learning
University of Wisconsin–Madison, Fall 2025 Instructor: Kirthevasan Kandasamy

Homework 1. Due 09/27/2025, 11.59 pm

Instructions:

1. Homework is due on Canvas by 11:59 pm on the due date. Please plan to submit well before the deadline. Refer
to the course website for policies on late submission.

2. Homework must be typeset using appropriate software, such as LATEX. Handwritten and scanned submissions
will not be accepted.

3. Your solutions will be evaluated on correctness, clarity, and conciseness.

4. Unless otherwise specified, you may use any result we have already proved in class. Clearly state which result
you are using.

5. Solutions to some of the problems may be found in the recommended textbook or other resources. Unless stated
otherwise, you should attempt the problems on your own. You may not search the internet for solutions or use
LLM-based tools.

6. If you use any external references, please cite them in your submission.

7. Collaboration: You may collaborate in groups of size up to 3 to solve problems indicated by a star (?). You
may not collaborate on other problems. If you collaborate, please indicate your collaborators at the beginning
of the problem. Even if you collaborate, you must write the solution in your own words.
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1 Relationships between divergences

Let P,Q be probabilities with densities p, q respectively. Recall the following divergences we discussed in class

KL divergence: KL(P,Q) =
∫

log
(
p(x)
q(x)

)
p(x)dx.

Total variation distance: TV(P,Q) = supA |P (A)−Q(A)|.

L1 distance: ‖P −Q‖1 =
∫
|p(x)− q(x)|dx.

Hellinger distance: H2(P,Q) =
∫ (√

p(x)−
√
q(x)

)2

dx.

Chi squared divergence: χ2(P,Q) =
∫ (p(x)−q(x))2

q(x) dx = EQ
[(

p(X)
q(X) − 1

)2
]

.

Finally, let ‖P ∧ Q‖ =
∫

min(p(x), q(x))dx denote the affinity between two distributions. When we have n i.i.d
observations, let Pn, Qn denote the product distributions.

Prove the following statements:

1. [3 pts] KL(Pn, Qn) = nKL(P,Q).

2. [3 pts] H2(Pn, Qn) = 2− 2
(
1− 1

2H2(P,Q)
)n

.

3. [3 pts] TV(P,Q) = 1
2‖P −Q‖1.

Hint: Can you relate both sides of the equation to the set A = {x; p(x) > q(x)}?

4. [3 pts] TV(P,Q) = 1− ‖P ∧Q‖.

5. [3 pts] H2(P,Q) ≤ ‖P −Q‖1.
Hint: What can you say about (a− b)2 and |a2 − b2| when a, b > 0?

6. [3 pts] KL(P,Q) ≤ χ2(P,Q).
Hint: You may use the inequality log(x) ≤ x− 1 for x > 0.

2 Lower bounds with mixtures

In this question, you will prove a variant of our current framework for proving minimax lower bounds that involve
mixtures of distributions.

1. [5 pts] We observe data S drawn from some distribution P belonging to a family of distributions P . We wish to
estimate a parameter θ(P ) ∈ Θ of interest via a loss Φ ◦ ρ, where Φ : R+ → R+ is a non-decreasing function
and ρ : Θ × Θ → R+ is a metric. Let P1, . . . ,PN be subsets of P , and let Λj denote a prior on Pj . Let P j
denote the mixture,

P j(S ∈ A) = EP∼Λj
[ES∼P [1(S ∈ A)]] .

Let δ = minj 6=k infP∈Pj ,P ′∈Pk
ρ(θ(P ), θ(P ′)). Let ψ be a function which maps the data to [N ] and θ̂ be an

estimator which maps the data to Θ. Then, prove that

R? = inf
θ̂

sup
P∈P

ES
[
Φ ◦ ρ

(
θ(P ), θ̂(S)

)]
≥ Φ

(
δ

2

)
inf
ψ

max
j∈[N ]

P j(ψ(S) 6= j).

2. [3 pts] Suppose we observe n i.i.d datapoints S = {X1, . . . , Xn} drawn from someP ∈ P . Let {P0, P1, . . . , PN} ⊂
P and let δ = minj∈{1,...,N} ρ(θ(P0), θ(Pj)). Let P = 1

N

∑N
j=1 P

n
j . Show that,

R?n ≥
1

4
Φ

(
δ

2

)
exp

(
−KL(Pn0 , P )

)
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3. [2 pts] Using the result from part 2, briefly explain why using mixtures in the alternatives can (i) lead to tighter
lower bounds, but (ii) are difficult to apply.

3 PAC lower bounds for normal mean estimation

We are given n independent samples S = {X1, . . . , Xn}, where each Xi is sampled from a normal distribution
N (µ, σ2) with unknown mean µ, but known variance σ2. Let ε > 0 be given. We wish to design an estimator
µ̂ : Rn → R which is ε close to µ with high probability. In this question, you will show that the minimax risk R?n,
defined below, satisfies,

R?n
∆
= inf

µ̂
sup
µ∈R

P(|µ̂(S)− µ| > ε) = 2

(
1− Φ

(
ε
√
n

σ

))
.

Here, Φ(x) = PZ∼N (0,1)(Z < x) is the CDF of the standard normal distribution.

1. [2 pts] (Upper bound) Design an estimator µ̂ for µwhich satisfies supµ∈R P(|µ̂(S)−µ| > ε) = 2
(

1− Φ
(
ε
√
n
σ

))
.

2. [7 pts] (Lower bound) Next, show that

inf
µ̂

sup
µ∈R

P(|µ̂(S)− µ| > ε) ≥ 2

(
1− Φ

(
ε
√
n

σ

))
.

4 Sparse Normal Estimation ?

We observe a dataset S ⊂ Rd of n i.i.d points drawn from a distribution P belonging to the class P of d–dimensional
normal distributions whose means are at most k-sparse. For a vector v ∈ Rd, let |v|0 =

∑d
i=1 1(vi 6= 0) denote the

number of non-zero elements. Then, P is defined as follows:

P =
{
N (µ, σ2I); µ ∈ Rd, |µ|0 ≤ k

}
We wish to design an estimator θ̂ for the mean θ(P ) = EX∼P [X] to minimize the L2 loss ‖θ̂ − θ‖22. In this problem,
you will show

R?n
∆
= inf

θ̂
sup
P∈P

ES
[ ∥∥θ̂(S)− θ(P )

∥∥2

2

]
∈ Θ

(
σ2k log(d)

n

)
.

You may assume that d and/or k is sufficiently large, but k ∈ o(d).

1. [8 pts] (Lower bound) Using Fano’s method or otherwise, show that R?n ∈ Ω
(
σ2k log(d/k)

n

)
.

Hint. You may use the following version of the Gilbert-Varshamov bound that applies to sparse binary vectors:
For any ω, ω′ ∈ {0, 1}d, let H(ω, ω′) =

∑d
i=1 1(ωi 6= ω′i) denote the Hamming distance. Then, for all integers

k such that 1 ≤ k ≤ d/8, there exists a set of N binary vectors ω1, . . . , ωN ∈ {0, 1}d such that the following

hold: (i) H(ωi, ωj) ≥ k/2 for all i, j ∈ [N ], (ii) N ≥
(
1 + d

2k

) k
8 , (iii) |ωj |0 = k for all j ∈ [N ].

2. (Upper bound) We will study the following estimator θ̂. Let X = 1
n

∑n
i=1Xi ∈ Rd denote the sample mean.

Let τ denote the kth largest element of {|X|1, . . . |X|d}. The ith element of θ̂ is given by,

θ̂i =

{
Xi if |Xi| ≥ τ,
0 otherwise.

(1)

(a) [5 pts] First show that ‖θ − θ̂‖∞ ≤ 2‖θ −X‖∞ a.s.

(b) [5 pts] Let Z ∼ N (0, Id) be a d-dimensional standard normal vector. Show that E[‖Z‖2∞] ∈ O(log(d)).

Hint. You may use the fact that the moment generating function MGF of a χ2
1 distribution is MGF(t) =

1√
1−2t

if t < 1/2 and MGF(t) =∞ otherwise.
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3. [3 pts] Combining the results from parts 2a and 2b, upper bound the risk of the estimator in (1).

Acknowledgement. Problem 4.2 was based on a class project by Jingyun Jia, Jiaqi Tang, and Xinta Yang (2024).

5 Estimating a categorical distribution ?

We are given n independent samples S = {X1, . . . , Xn}, where each Xi is sampled from a categorical distribution
with d items Categ (θ). Here Xi ∈ {0, 1}d is a one-hot vector where Xi,k = 1 means that the ith item selected was k,
and θ ∈ ∆d−1 =

{
θ′ ∈ Rd; θ′ ≥ 0, θ′>1 = 1

}
.

We wish to estimate the distribution θ in the `22 loss. The minimax risk is,

R?
∆
= inf

θ̂
sup

θ∈∆d−1

ES∼Categ (θ)n

[
‖θ̂(S)− θ‖22

]
.

[16 pts] Find the minimax rate for this problem, in terms of the number of data n and the number of items d. You may
assume that d ∈ o(n).

Hint. You may find the following inequalities useful: (i) log(1 + x) ≤ x for all x > −1, (ii) log(1 + x) ≥ x− x2/2
for all x ≥ −0.68.
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