
CS/ECE/STAT-861: Theoretical Foundations of Machine Learning
University of Wisconsin–Madison, Fall 2025 Instructor: Kirthevasan Kandasamy

Homework 2. Due 10/11/2025, 11.59 pm

Instructions:

1. Homework is due on Canvas by 11:59 pm on the due date. Please plan to submit well before the deadline. Refer
to the course website for policies on late submission.

2. Homework must be typeset using appropriate software, such as LATEX. Handwritten and scanned submissions
will not be accepted.

3. Your solutions will be evaluated on correctness, clarity, and conciseness.

4. Unless otherwise specified, you may use any result we have already proved in class. Clearly state which result
you are using.

5. Solutions to some of the problems may be found in the recommended textbook or other resources. Unless stated
otherwise, you should attempt the problems on your own. You may not search the internet for solutions or use
LLM-based tools.

6. If you use any external references, please cite them in your submission.

7. Collaboration: You may collaborate in groups of size up to 3 to solve problems indicated by a star (?). You
may not collaborate on other problems. If you collaborate, please indicate your collaborators at the beginning
of the problem. Even if you collaborate, you must write the solution in your own words.
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1 Density estimation in a Hölder class ?

Let H(2, L,B), defined below, denote the bounded second order Hölder class in [0, 1]. It consists of functions whose
derivatives are L-Lipschitz.

H(2, L,B) = {f : [0, 1]→ [0, B]; |f ′(x1)− f ′(x2)| ≤ L|x1 − x2| for all x1, x2 ∈ R}

Let P denote the set of distributions whose densities are in H(2, L,B). We observe n samples S = {X1, . . . , Xn}
drawn i.i.d from some P ∈ P and wish to estimate its density p in the L2 loss Φ ◦ ρ(p1, p2) = ‖p1 − p2‖22. The
minimax risk is

R?n = inf
p̂

sup
p∈H(2,L,B)

ES
[
‖p− p̂‖22

]
.

In this question, you will show that the minimax rate1 for this problem is Θ(n−4/5).

1. [15 pts] (Lower bound) Using Fano’s method, or otherwise, show that R?n ∈ Ω(n−4/5).

2. [15 pts] (Upper bound) Design an estimator p̂ for p and bound its risk by O(n−4/5).

Hint: If you choose to use a kernel density estimator, consider the first order Taylor expansion of p and then
apply the Hölder property. You may ignore boundary correction.

3. [4 pts] (High dimensional setting) In words, briefly explain how you can extend both the upper and lower bounds
for density estimation in d dimensions. The d dimensional second-order Hölder class, defined below, consists
of functions whose partial derivatives are Lipschitz.

H(2, L,B) =

{
f : [0, 1]d → [0, B];

∂f

∂xi
is L–Lipschitz for all i ∈ [d]

}
.

You can focus only on the key differences. A detailed proof is not necessary.

4. [4 pts] (Lipschitz second derivatives) In words, briefly explain how you can extend both the upper and lower
bounds if the densities belonged to the third order Hölder class in one dimension, defined below:

H(3, L,B) = {f : [0, 1]→ [0, B]; |f ′′(x1)− f ′′(x2)| ≤ L|x1 − x2| for all x1, x2 ∈ R}

Please focus only on the key differences. A detailed proof is not necessary.

Hint: For the upper bound, if you choose to use a kernel density estimator, you may consider a kernel of the
form K(u) = 1(|u| ≤ 1/2)(α− βu2) for appropriately chosen α, β.

2 Short problems on Chapter 3

1. (What is wrong with this proof?) We perform empirical risk minimization (ERM) in a finite hypothesis class
H using an i.i.d dataset S of n points. Let h? ∈ argminh∈H L(h) be an optimal classifier in the class, and let
ĥ ∈ argminh∈H L̂(h) minimize the empirical loss of the dataset S. Recall that we showed, with probability at
least 1− 2|H|e−2nε2 , we have

L(ĥ)− L(h?) ≤ L(ĥ)− L̂(ĥ) + L̂(h?)− L(h?) ≤ 2ε.

This resulted in the bound E[L(ĥ)− L(h?)] ∈ Õ
(√

log(|H|)
n

)
.

A student offers the following alternative proof and claims that it is possible to bound the error without any
dependence on |H|:

1Recall from class that the minimax rate for a Hölder class of order β isO
(
n
− 2β

2β+d

)
in Rd.
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(i) Let B1 = {L̂(h?)− L(h?) > ε} denote the bad event that the empirical loss of h? is ε larger than its true
loss. By Hoeffding’s inequality we have P(B1) ≤ e−2nε2 .

(ii) Similarly, Let B2 = {L(ĥ)− L̂(ĥ) > ε} denote the bad event that the empirical loss of ĥ is ε smaller than
its true loss. By Hoeffding’s inequality we have P(B2) ≤ e−2nε2 .

As L̂(ĥ) ≤ L̂(h?), we have,

L(ĥ)− L(h?) ≤ L(ĥ)− L̂(ĥ) + L̂(h?)− L(h?) ≤ 2ε

under the good event G = Bc1 ∩ Bc2 which is true with probability at least 1 − 2e−2nε2 . This result does not
depend on |H| and even applies to infinite hypothesis classes provided there exists h? which minimizes the loss.

[4 pts] Which sentence below best describes the mistake (if any) with this proof? State your answer with an
explanation. If you believe there is a mistake, be as specific as possible as to what the mistake is.

(a) Both statement (i) and statement (ii) are incorrect.

(b) Only statement (i) is incorrect. Statement (ii) is correct.

(c) Only statement (ii) is incorrect. Statement (i) is correct.

(d) Both statements are correct. There is nothing wrong with this proof.

2. (Uniform convergence via finite covers for classification) In class, we saw that it may not be possible to show
uniform convergence for “non-smooth” losses, such as the 0-1 loss for binary classification, via a covering
argument. In this question, you will show this rigorously via threshold classifiers.

Consider the following setting for binary classification, where for all X,Y ∼ P , we have X ∈ [0, 1] and
Y ∈ {0, 1}. Consider the following hypothesis class,

H = {hθ;hθ(x) = 1(x ≥ θ); θ ∈ [0, 1]} .

[7 pts] Prove that2 for all ε > 0, we cannot construct a finite Cε ⊂ [0, 1] such that the following is true: for every
θ ∈ [0, 1], there exists [θ] ∈ Cε such that ∀ x, y |`(hθ, (x, y))− `(h[θ], (x, y))| ∈ O(ε).

3. (Empirical Rademacher complexity of threshold classifiers) Consider a binary classification problem where
X = R. Consider the following dataset S = {(x1 = 0, y1), (x2 = 1, y2)}, where x1 < x2 and y1, y2 ∈ {0, 1}
are arbitrary.

(a) [2 pts] Let H1 = {hθ(x) = 1(x ≥ θ); θ ∈ R} be the hypothesis class of one-sided threshold classifiers.
Compute the empirical Rademacher complexity R̂(H1, S).

(b) [2 pts] Let H2 = {hθ(x) = 1(x ≥ θ); θ ∈ R} ∪ {hθ(x) = 1(x ≤ θ); θ ∈ R} be the class of two-sided
threshold classifiers. Compute the empirical Rademacher complexity R̂(H2, S).

(c) [1 pts] Are the values computed above consistent with the fact thatH1 ⊂ H2?

4. [6 pts] (Reading exercise, VC dimension of linear classifiers) Consider a binary classification problem where
X = RD is the D-dimensional Euclidean space. The class of linear classifiers is given by H = {hw,b(x) =
1[w>x+ b ≥ 0];w ∈ RD, b ∈ R}. Prove that the VC dimension of this class is D + 1.

You may read the proof in either SB or MRT, and reproduce it in your own words.

3 On the Rademacher complexity

Recall the following definitions from class. Let σ = (σ1, . . . , σn) ∈ {−1,+1}n be n independent Rademacher ran-
dom variables. For A ⊂ Rn, denote R̂(A)

∆
= Eσ

[
supa∈A

1
nσ
>a
]
. Next, let Z be a set, let F ⊂ RZ . The empirical

2Recall, in the linear regression example, we first showed that the losses were Lipschitz, i.e., for all x, y, we have |`(hθ, (x, y)) −
`(hθ′ , (x, y))| ≤ K‖θ − θ′‖2. We used this property when constructing a cover for all ε and proving uniform convergence.
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Rademacher complexity ofF for set S = {z1, . . . , zn} ⊂ Z is, R̂(F , S)
∆
= R̂(F(S)) = Eσ

[
supf∈F

1
n

∑n
i=1 σifi(zi)

]
.

The Rademacher complexity of a function class F with respect to a distribution P is,Rn(F) = ES∼Pn
[
R̂(F , S)

]
.

Prove the following statements. In each case, you may prove the first statement about R̂ and then verify that the second
statement aboutRn follows from the first.

1. [2 pts] Let A ⊂ B ⊂ Rn. Then R̂(A) ≤ R̂(B).
Hence, if F ⊂ G ⊂ RZ , we haveRn(F) ≤ Rn(G).

2. [3 pts] Let α ∈ R, and let a ∈ Rn. Let A ⊂ Rn. Then, R̂(αA+ a) = |α|R̂(A).
Hence, for any F ⊂ RZ and f ∈ RZ , we haveRn(αF + f) = |α|Rn(F).

3. [2 pts] Let A,B ⊂ Rn. Then, R̂(A+B) = R̂(A) + R̂(B).
Hence, for any F ,G ⊂ RZ , we haveRn(F + G) = Rn(F) +Rn(G).

4. [4 pts] Let A ⊂ Rn. Let |A| = {|a|; a ∈ A}, where |a| = {|a1|, . . . , |an|} is the pointwise absolute value.
Then, R̂(|A|) ≤ R̂(A).
Hence, for any F ⊂ RZ , we haveRn(|F|) ≤ Rn(F) where |F| = {|f |; f ∈ F} and |f |(x) = |f(x)|.

5. [4 pts] Let A′, A′′ ⊂ Rn. Let A = {max(a′, a′′); a′ ∈ A′, a′′ ∈ A′′}, where max is the pointwise maximum of
the vectors. Then, R̂(A) ≤ R̂(A′) + R̂(A′′).
Hence, for any F ′,F ′′ ⊂ RZ , we haveRn({max(f ′, f ′′); f ′ ∈ F ′, f ′′ ∈ F ′′}) ≤ Rn(F ′) +Rn(F ′′).

Hint. : For any x, y ∈ R, we have max(x, y) = 1
2 (x+ y + |x− y|).

4 Sauer’s lemma for interval classifiers ?

1. (Interval classifiers) Let X = R. Consider the class of interval classifiers, given by

H = {ha,b(x) = 1(a ≤ x ≤ b); a, b ∈ R, a ≤ b}.

(a) [3 pts] What is the VC dimension d of this class?

(b) [6 pts] Show that Sauer’s lemma is tight for this class. That is, for all n, show that g(n,H) =
∑d
i=0

(
n
i

)
.

2. (Union of interval classifiers) Let X = R. Consider the class of the union of K interval classifiers, given by

H = {ha,b(x) = 1(∃k ∈ {1, . . . ,K} s.t ak ≤ x ≤ bk); a, b ∈ Rk, ak ≤ bk∀ k}.

(a) [4 pts] What is the VC dimension d of this class?

(b) [8 pts] Show that Sauer’s lemma is tight for this class. That is, for all n, show that g(n,H) =
∑d
i=0

(
n
i

)
.

Hint: The following identity, which we used in the proof of Sauer’s lemma, may be helpful.

∀m > k,

(
m

k

)
=

(
m− 1

k

)
+

(
m− 1

k − 1

)
.

3. [5 pts] (Tightness of Sauer’s lemma) Prove the following statement about the tightness of Sauer’s lemma when
X = R: For all d > 0, there exists a hypothesis class H ⊂ {h : R→ {0, 1}} with VC dimension dH = d such
that, for all dataset sizes n > 0, we have g(n,H) =

∑d
i=0

(
n
i

)
. Note that the hypothesis class H could depend

on d but not on n.

Hint: There are many ways to solve this. One approach will be to use the results from part 2 which will allow
you to prove the results for even d. You should consider a different hypothesis class to show this for odd d.

An alternative approach is to prove the following more general statement: “For any set X such that |X | ≥ d,
there exists a hypothesis classH of VC dimension d such that for all n ≤ |X |, we have g(n,H) =

∑d
i=0

(
n
i

)
”.
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