
CS/ECE/STAT-861: Theoretical Foundations of Machine Learning
University of Wisconsin–Madison, Fall 2025 Instructor: Kirthevasan Kandasamy

Homework 3. Due 10/25/2025, 11.59 pm

Instructions:

1. Homework is due on Canvas by 11:59 pm on the due date. Please plan to submit well before the deadline. Refer
to the course website for policies on late submission.

2. Homework must be typeset using appropriate software, such as LATEX. Handwritten and scanned submissions
will not be accepted.

3. Your solutions will be evaluated on correctness, clarity, and conciseness.

4. Unless otherwise specified, you may use any result we have already proved in class. Clearly state which result
you are using.

5. Solutions to some of the problems may be found in the recommended textbook or other resources. Unless stated
otherwise, you should attempt the problems on your own. You may not search the internet for solutions or use
LLM-based tools.

6. If you use any external references, please cite them in your submission.

7. Collaboration: You may collaborate in groups of size up to 3 to solve problems indicated by a star (?). You
may not collaborate on other problems. If you collaborate, please indicate your collaborators at the beginning
of the problem. Even if you collaborate, you must write the solution in your own words.

1

1 Lower bounds on the excess risk for binary classification ?

In this question, you will derive lower bounds on the excess risk for binary classification. You will first consider a
simple setting to build intuition, and then prove a key technical result for finite VC classes, which was omitted in the
lectures.

Let H ⊂ {0, 1}X be a given hypothesis class. For any h ∈ H, let `(h, (X,Y)) = 1(h(X) 6= Y) be the 0–1 loss on
instance (X,Y), and let L(h, P) = EX,Y∼P [1(h(X) 6= Y)] be the population loss. In this question, we will consider
algorithms ĥ which map a given dataset of n points S = {(X1, Y1), . . . , (Xn, Yn)} to a hypothesis inH.

1. [8 pts] (One sided-threshold classifiers) Consider a binary classification problem with input in X = [0, 1] and
label in {0, 1}. Let P be the set of distributions whose marginal p(x) is the uniform distribution on [0, 1]. Let
H = {ht(·) = 1(· ≥ t); t ∈ [0, 1]} be the class of one-sided threshold classifiers. Using Le Cam’s method,
show that, for any algorithm ĥ, there exists some distribution P ∈ P such that

ES∼Pn
[
L(ĥ(S), P)

]
≥ inf
h∈H

L(h, P) + Ω

(√
1

n

)
.

2. [10 pts](Classification in a VC class) Now, letH be a hypothesis class with VC dimension d. In class, we used
the local Fano method to show that for any algorithm ĥ, there exists some distribution P ∈ P such that, for
sufficiently large d,

ES∼Pn
[
L(ĥ(S), P)

]
≥ inf
h∈H

L(h, P) + Ω

(√
d

n

)
.

Prove the following result—omitted in class—which provides a lower bound on the separation between the
alternatives: You may refer to the proofs from the lecture notes to recall necessary definitions.

Let Pω, Pω′ ∈ P ′. Then, ∆(Pω, Pω′) ≥ γ
dH(ω, ω′).

2 Two-layer Neural Networks

(Reading exercise) In this problem, you will improve the bound on the Rademacher complexity of a two-layer neural
network we proved in class. You may find it helpful to read section 5.3 of Tengyu Ma’s lecture notes before attepting
parts 2 and 3.

1. [6 pts] (Warm up, Data-dependent bounds for linear models under `2 constraints) Let H = {hθ;hθ(x) =
θ>x; θ ∈ Rd, ‖θ‖2 ≤ Bθ}, be the class of linear regressors with bounded `2 norm. Let S = {x1, . . . , xn} ⊂ Rd

be given. Then, show that R̂(H, S) ≤ Bθ
n ‖X‖F . Here, ‖X‖2F =

∑n
i=1

∑d
j=1 x

2
i,j is the squared Frobenius

norm of the data matrix X ∈ Rn×d, whose ith row is x>i .

2. [3 pts] Let A ⊂ Rn such that 0 ∈ A. Let σ ∈ {−1,+1}n denote n independent Rademacher random variables.
Then, show that Eσ

[
supa∈A |σ>a|

]
≤ 2Eσ

[
supa∈A σ

>a
]
.

Hint. Letting φ(u) = max(0, x), we can write |u| = φ(u) + φ(−u).

3. (Rademacher complexity of a two-layer neural network) A two-layer neural network, whose input x ∈ Rd, with
ReLU activation can be characterized as follows. It has a hidden layer with m neurons. Let W ∈ Rm×d be the
weight matrix mapping inputs to the hidden layer. The output of each hidden layer neuron is passed through a
ReLU activation function φ(x) = max(x, 0). A linear layer at the output with parameters β ∈ Rm, maps these
activations to a scalar output. Letting θ = (β,W) denote the parameters of the neural network, the output of the
neural network is given by hθ(x) = β>φ(Wx), where, φ is applied pointwise to Wx.

Let us denote ‖θ‖1,2 =
∑m
j=1 |βj |‖wj‖2, where w>j is the j th row of W . We will consider the following

hypothesis class,
H =

{
hθ; hθ(x) = β>φ(Wx); ‖θ‖1,2 ≤ Bθ, ∀ j ∈ [m]

}
.

We will also assume that for X ∼ P , we have E[‖X‖22] ≤ B2
x.

2

https://pages.cs.wisc.edu/~kandasamy/courses/25fall-cs861/lectures/tengyu_ma_notes.pdf

(a) [5 pts] Let S = {x1, . . . , xn} be a dataset of n points. Show that the empirical Rademacher complexity
satisfies,

R̂(H, S) ≤ Bθ
n

Eσ

[
sup

w;‖w‖2≤1

∣∣∣∣∣
n∑
i=1

σiφ(w>xi)

∣∣∣∣∣
]

(b) [4 pts] Combine the above result with the results in parts 1 and 2, to show that,

Rn(H) ≤ 2BθBx√
n

.

N.B. Note that, unlike the result we showed in class, here, there is no explicit dependence on the number
of neurons m.

3 The doubling trick

In class, we studied several algorithms for sequential decision-making problems where the time horizon is assumed
to be known ahead of time. However, often, we are interested in any-time algorithms, where we execute an algorithm
indefinitely, but wish to bound the regret after any number of rounds.

The doubling trick is often used to convert a given known time horizon algorithm into an any-time procedure. For
such an algorithm A, let AT be the version of A that is executed with time horizon T . The doubling trick proceeds
by choosing an arbitrary time horizon T0 (for simplicity, we may take T0 = 1), and then executing AT0

for T0 rounds,
then A2T0 for 2T0 rounds, and proceeding in this fashion, doubling the time horizon each time we finish an execution.

Algorithm 1 The doubling trick
Given: An algorithm A.
Set T0 ← 1.
Initialize algorithm AT0

.
for t = 1, 2, . . . do

if t ≥ 2T0 then
Set T0 ← 2T0.
Re-initialize algorithm AT0 .

end if
Execute round t− T0 + 1 of algorithm AT0

.
end for

In Hedge and EXP3, re-initialization would mean resetting the cumulative losses to 0, and setting the learning rate to
η =

√
log(K)/(KT0). In UCB, this could mean resetting the mean estimates and confidence intervals.

We wish to bound the regret of this algorithm, which can be written as RT
∆
=
∑T
t=1 rt, where rt is the instantaneous

regret. For instance, in the experts problem, this would be the difference between the loss of the action taken and the
loss of any fixed action.

Suppose that there exist α > 0, β > 0, and γ ∈ (0, 1) such that the regret of algorithmA satisfiesRT (AT) ≤ αT γ+β
for all known time horizons T . Let A′ denote the version of this algorithm modified using the doubling trick.

[6 pts] Show that when executed in an any-time fashion, A′ satisfies RT (A′) ∈ Õ(T γ) for all T .

4 Optimistic algorithms for structured bandits

1. (Linear bandits) Recall the stochastic linear bandit problem, where, on each round a learner chooses an action
At and observes Xt = θ>? At + εt. In class, we studied the LinUCB algorithm which chooses action At =

3

argmaxa∈AUCBt−1(a) on round t, where UCBt−1(a) = θ̂>t−1a+ βt‖a‖V −1
t−1

. Here,

θ̂t
∆
= argmin

θ∈Rd

(
λ‖θ‖22 +

t∑
s=1

(Xs − θ>As)2

)
and, Vt = λI +

t∑
s=1

AsA
>
s ,

We showed that UCBt−1 is an upper confidence bound for θ>? a for all a and all t, for appropriately chosen βt.

(a) [2 pts] (Expression for θ̂t) Show that, θ̂t = V −1
t

∑t
s=1AsXs.

(b) (Deriving LinUCB via the optimism principle) Recall the “optimism under uncertainty principle”, which
states that we should pretend that the environment is as nice as statistically possible, given the data, and
then behave myopically. A common application of this idea for linear bandits is as follows (see for instance,
LS Chapter 19): construct a confidence region Ct for θ?, and then choose the action which optimistically
maximizes the expected reward in Ct. That is,

At = argmax
a∈A

max
θ∈Ct−1

θ>a.

In our proof of LinUCB we showed that the following Ct traps θ? with probability at least 1− 1/T 2,

Ct =
{
θ ∈ Rd; ‖θ − θ̂t‖Vt ≤ βt+1

}
.

Here, θ̂t and βt are as given above. You are encouraged to go through the proof we did in class and identify
precisely where we showed this.

[6 pts] Show that the above choice of Ct yields precisely the same action selection rule as LinUCB.

2. (Reading exercise, GP bandits) Let A be an action space and let f : A → R be an (unknown) function defined
on A. Consider a bandit algorithm π whose pseudo-regret is,

RT (π) = Tf(a?) −
T∑
t=1

f(At).

Here a? ∈ argmaxa∈A f(a). Recall the following recipe for designing optimistic algorithms for structured
bandits, and bounding the pseudo-regret.

(a) Algorithm: on each round choose At = argmaxa∈AUCBt−1(a), where UCBt is an upper confidence
bound for f based on data collected up to round t.

(b) Let G be the good event in which the confidence intervals trap the true function f . Use martingale con-
centration to upper bound P(Gc).

(c) Under G, bound the instantaneous pseudo-regret by f(a?) − f(At) ≤ 2 × eAt,t−1, where eAt,t−1 is the
width of the confidence interval of At at round t− 1.

(d) Bound the summation
∑T
t=1 eAt,t−1.

[7 pts] Read the paper Gaussian process optimization in the bandit setting by Srinivas, Krause, Kakade, Seeger,
2010, available at arxiv.org/pdf/0912.3995. In particular, focus on the frequentist result in Theorem 3,
when f lies in an RKHS. Identify the specific equation, section, lemma, or theorem in the paper that corresponds
to each of the four steps outlined above.

N.B. You do not need to understand what an RKHS is to answer this question. My recommendation would be to
read sections 2 and 3 to understand the setting and then focus on Theorem 3. You can then go over the proof of
Theorem 3 in Appendix A and B. While Appendix A is written in the Bayesian setting, many results (including
those relevant to this question) are also applicable in the frequentist setting.

4

https://arxiv.org/pdf/0912.3995

5 Rademacher complexity of monotone functions ?

Consider the class of non-decreasing functions bounded in [0, 1],

H =
{
h ∈ [0, 1]R+ ; for all t1 < t2, h(t1) ≤ h(t2)

}
(1)

We perform regression via ERM in this class, and wish to bound the excess risk via its Rademacher complexity
Rn(H). In this question, you will bound the Rademacher complexity of this class.

1. [8 pts] (Covering number bound.) Let S = {x1, . . . , xn} ⊂ R be a given dataset of n points. Show that

N∞(ε,H(S))
∆
= N(ε,H(S), ‖ · ‖∞) <

{
(n+ 1)

1
2ε if, ε ≤ 1/2,

1 if, ε ≥ 1/2.

2. [3 pts] Recall the following bound on the empirical Rademacher complexity we showed in class, for p ∈ [1,∞]
and A ⊂ [−B,B]n:

R̂(A) ≤ inf
ε>0

(
ε+B

√
2 logNp(ε, A)

n

)
Using this result, show thatRn(H) ∈ Õ(n−1/3).

3. [3 pts] (Dudley entropy integral) Recall the bound on the Rademacher complexity, obtained via the Dudley
entropy integral, for p ∈ [2,∞],

R̂(A) ≤ inf
ε≥0

(
4ε+

12√
n

∫ ∞
ε

√
log(Np(t, A)) dt

)
.

Bound the Rademacher complexity using the above result. Your rate should be better than than the one obtained
in part 2 by a polynomial factor.

4. [7 pts] (Slowly decreasing functions) Suppose that instead of (1),H, defined as follows, consists of unbounded,
but slowly decreasing functions:

H =
{
h ∈ RR+

+ ; for all t1 < t2, h(t1) ≤ h(t2), h(t) ≤ αtβ
}
.

Here, α < ∞ and β ∈ [0, 1] are fixed. Moreover, let us assume that the data distribution P has finite mean,

i.e., E[X] ≤ µ < ∞ and is η-sub-Gaussian, i.e., E
[
eλ(X−E[X])

]
≤ e

λ2η2

2 . Bound the Rademacher complexity
Rn(H) ofH with respect to P .

N.B. You may be able to relax the β ≤ 1 condition via a more involved analysis and obtain the same rate up to
polylog factors.

5

	Lower bounds on the excess risk for binary classification
	Two-layer Neural Networks
	The doubling trick
	Optimistic algorithms for structured bandits
	Rademacher complexity of monotone functions

