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Ch 0.1: Some common inequalities

Basic Logarithmic and Exponential Inequalities.

I For all x > −1,
x

1 + x
≤ log(1 + x) ≤ x .

I For all real x and all positive integers n,

ex ≥
(

1 +
x

n

)n
≥ 1 + x .

I For x ≥ −1 and r ≥ 1,
(1 + x)r ≥ 1 + rx .

When r ∈ [0, 1], the reverse holds.
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Classical Inequalities: Hölder, Cauchy–Schwarz, Minkowski

Let x , y ∈ Rd . Define ‖x‖p =
(∑d

i=1 |xi |p
)1/p

, for p ∈ [1,∞) and ‖x‖∞ = maxi |xi |.

I Hölder’s inequality: for p, q such that p, q ≥ 1 and 1
p + 1

q = 1,

‖xy‖1 ≤ ‖x‖p · ‖y‖q.

I Cauchy–Schwarz inequality: Hölder when p = q = 2:

〈x , y〉 ≤ ‖x‖2 ‖y‖2.

I Minkowski’s inequality (triangle inequality for `p-spaces). Let 1 ≤ p ≤ ∞. Then,

‖x + y‖p ≤ ‖x‖p + ‖y‖p.

I Let 1 ≤ p ≤ q ≤ ∞. Then, (Proof in HW0)

‖x‖q ≤ ‖x‖p, and
1

d1/p
‖x‖p ≤

1

d1/q
‖x‖q.
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Jensen’s and Harris’ Inequalities

Jensen’s inequality. Let f be a convex function and X be an integrable random
variable. Then f

(
E[X ]

)
≤ E

[
f (X )

]
. Similarly, if f is a concave function,

f
(
E[X ]

)
≥ E

[
f (X )

]
.

Harris’ covariance inequality. Let X be a random variable, and let f and g be
real-valued functions that are both non-decreasing. Then,

E
[
f (X ) g(X )

]
≥ E

[
f (X )

]
E
[
g(X )

]
.
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Ch 0.2: Bayesian Inference

Frequentist approach. In the frequentist paradigm, a parameter of interest θ is fixed
and unknown. Statistical inference targets objective estimation: ask how well data can
estimate θ via sampling distributions, confidence intervals, hypothesis tests, etc.
Example: Problem 1 in HW0 for normal mean estimation.

Bayesian approach.

I Here, θ is treated as a random variable taking values in Θ.

I A learner’s prior knowledge/beliefs about θ, before seeing data, are captured by a
prior distribution π(θ).

I Once the data X = x are observed, the prior is updated with the observed data
via the likelihood pX |θ(x | θ), yielding a posterior distribution π(θ | x).

In this class, we will mostly focus on the frequentist paradigm but will use Bayesian
inference for proving lower bounds (Chapter 1).
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Bayesian Setup: General Formulation

Given data X = x , we have:

Prior: π(θ), Learner’s prior beliefs about θ.

Likelihood: pX |θ(x | θ),

Probability of observing data x given that the parameter is θ.

Posterior: π(θ | x) =
pX |θ(x | θ)π(θ)∫

Θ
pX |θ(x | θ)π(θ) dθ

∝ pX |θ(x | θ)π(θ).

Learner’s beliefs about θ after observing data.

From the posterior, one can derive point estimates (e.g., posterior mean, mode) or
credible intervals.
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Example 1: Beta prior, Binomial likelihood

Prior π(θ).

θ ∈ (0, 1), π(θ) = Beta(α, β) : π(θ) =
1

B(α, β)
θα−1(1− θ)β−1.

Likelihood px |θ(x | θ).

X | θ ∼ Binomial(n, θ), x ∈ {0, . . . , n}, px |θ(x | θ) =

(
n

x

)
θx(1− θ)n−x .

Posterior π(θ | x).

π(θ | x) ∝ px |θ(x | θ)π(θ) ∝
[
θx(1−θ)n−x

] [
θα−1(1−θ)β−1

]
= θα+x−1(1−θ)β+n−x−1.

Thus, π(θ | x) = Beta
(
α + x , β + n − x

)
.
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Example 2: Normal prior and likelihood

Prior π(µ).

µ ∼ N (µ0, τ
2), π(µ) ∝ exp

(
−(µ− µ0)2

2τ2

)
.

Likelihood px|µ(x | µ).

Xi | µ
iid∼ N (µ, σ2), so p(x | µ) ∝ exp

(
− n

2σ2
(x̄ − µ)2

)
.

Posterior π(µ | x) is a normal distribution (Proof in HW0)

π(µ | x) = N
(

(τ−2)µ0 + (n/σ2)x̄

τ−2 + n/σ2
,

1

τ−2 + n/σ2

)
.
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Bayes’ risk and Bayes’ estimator

Definition. Given loss `(θ, a) for estimating θ with a, the risk (expected loss) of an
estimator θ̂ is

R(π, θ̂) = E
[
`(θ, θ̂(X ))

]
= Eθ

[
EX

[
`(θ, θ̂(X )) | θ

]]
.

An estimator θ̂ which minimizes R(π, θ̂), if it exists, is called the Bayes’ estimator.

The minimum value R(π, θ̂) is called the Bayes’ risk.

Computing the Bayes’ estimator. Let us write,

R(π, θ̂) = EX

[
Eθ
[
`(θ, θ̂(X )) | X

]
︸ ︷︷ ︸

(∗)

]
.

If we can find an estimator θ̂ which minimizes (∗) for all X , it is the Bayes’ estimator.
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Bayes’ Estimator (cont’d)

Squared loss. When `(θ1, θ2) = (θ1 − θ2)2 is the squared loss, the Bayes’ estimator is
the posterior mean θ̂Λ(X ) = E[θ|X ].

Proof. Define θ̂(X ) = E[θ|X ]. Consider any other estimator θ̂′.

EP [(θ̂′(X )− θ(P))2|X ] = EP [(θ̂′ − θ)2|X ] here, θ̂′(X )→ θ̂′, θ(P)→ θ.

= EP [(θ̂′ − θ̂)2 + (θ̂ − θ)2 + 2(θ̂′ − θ̂)(θ̂ − θ)|X ]

= EP [(θ̂′ − θ̂)2|X ] + EP [(θ̂ − θ)2|X ] + 2(θ̂′ − θ̂)E[(θ̂ − θ)|X ]

θ̂, θ̂′ are functions of X.

= EP [(θ̂′ − θ̂)2|X ] + EP [(θ̂ − θ)2|X ] as θ̂ = EP [θ|X ].

≥ EP [(θ̂ − θ)2|X ].

Absolute loss. When `(θ1, θ2) = |θ1 − θ2| is the absolute loss, the Bayes’ estimator is
the posterior median. (Proof: try at home)
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Ch 0.3: Sub-Gaussian concentration
We will start with some common probability inequalities

Union bound. For any events A1,A2, . . . ,An,

Pr
( n⋃
i=1

Ai

)
≤

n∑
i=1

Pr(Ai ).

Markov’s inequality. Let X be a non-negative random variable and let a > 0. Then

Pr(X ≥ a) ≤ E[X ]

a
.

Chebyshev’s inequality. Let X be any random variable with finite mean µ = E[X ]
and finite variance σ2 = Var(X ). For any b > 0,

Pr
(
|X − µ| ≥ b

)
≤ σ2

b2
.
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Sub-Gaussian Random Variables (cont’d)

Sub-Gaussian random variables. If a random variable X satisfies

E
[
et(X−E[X ])

]
≤ e

σ2t2

2 ,

for all t ∈ R, then it is said to be σ-sub-Gaussian.

Intuitively, the tail decays at least as fast as a N (0, σ2) RV.
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Sub-Gaussian Random Variables (cont’d)

Sub-Gaussian concentration. If X is σ-sub-Gaussian, then

P(X − E[X ] > ε) ≤ e
−ε2

2σ2 , P(X − E[X ] < −ε) ≤ e
−ε2

2σ2 .

Proof. Assume E[X ] = 0, for simplicity. Then, for all t,

P(X > ε) = P
(
etX > etε

)
≤ E[etX ]

etε
by Markov inequality, P(Z > a) ≤ E[Z ]

a
for Z > 0

≤ e
1
2
t2σ2−tε sub-Gaussianity definition, true for all t.

By choosing t = ε/σ2 to minimize the exponent, we have,

P(X > ε) ≤ e
−ε2

2σ2 .
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Sub-Gaussian Random Variables (cont’d)

Some examples:

I If X ∼ N (µ, σ2), then X is σ-sub-Gaussian.

I If supp (X ) ⊂ [a, b], then X is 1
2 (b − a)-sub-Gaussian. Sub-Gaussian

concentration is Hoeffding’s inequality.

Some properties of sub-Gaussian RVs: (Proofs: try at home)

1) Let a ∈ R. If X is σ-sub-Gaussian, then aX is |a|σ-sub-Gaussian.

2) If X1, . . . ,Xn are independent sub-Gaussian RVs with constants σ1, . . . , σn, then∑n
i=1 Xi is

√
σ2

1 + · · ·+ σ2
n sub-Gaussian.

3) If X1, . . . ,Xn are independent σ-sub-Gaussian RVs, then

P

(∣∣∣∣∣1n∑
i

(Xi − E[Xi ])

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−nε2

2σ2

)
.
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Sub-Gaussian Random Variables (cont’d)

The maximal inequality. Let Z1, . . . ,Zn be zero mean σ-sub-Gaussian random
variables (not necessarily independent). Then,

E
[

max
i∈[n]

Zi

]
≤ σ

√
2 log(n).

Proof. The following holds for all t:

exp

(
tE
[

max
i∈[n]

Zi

])
≤ E

[
exp

(
t max
i∈[n]

Zi

)]
By Jensen’s and concavity of exp

= E
[

max
i∈[n]

etZi

]
≤ E

[
n∑

i=1

etZi

]

≤ ne
t2σ2

2 Sub-Gaussianity
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Proof of maximal inequality (cont’d)

We just showed,

exp

(
tE
[

max
i∈[n]

Zi

])
≤ ne

t2σ2

2

Taking log on both sides, we have, for all t,

E
[

max
i∈[n]

Zi

]
≤ log(n)

t
+

tσ2

2
.

Choosing t = 1
σ

√
2 log(n) to minimize the RHS, gives the bound.

16/58



McDiarmid’s inequality

Let X1,X2, . . . ,Xn be independent random variables such that Xi ∈ Xi for all i . Let
f : X1 × · · · × Xn → R satisfy the bounded differences condition: for each i , there
exists ci such that for all x1, x2, . . . , xi , x

′
i , . . . , xn, we have,∣∣f (x1, . . . , xi , . . . , xn) − f (x1, . . . , x

′
i , . . . , xn)

∣∣ ≤ ci .

Then for any t > 0,

Pr (f (X1, . . . ,Xn)− E[f (X1, . . . ,Xn)] ≥ t) ≤ exp

(
− 2 t2∑n

i=1 c
2
i

)
,

Pr ( f (X1, . . . ,Xn)− E[f (X1, . . . ,Xn)] ≤ −t) ≤ exp

(
− 2 t2∑n

i=1 c
2
i

)
.
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Ch 0.4: Covering and Packing Numbers
Expl: Write 4 properties and pseudo-metric before pause.

Metric. Let X be a set and let ρ : X × X → R+ be a function. We say ρ is a metric
if it satisfies the following four properties for all x , y , z ∈ X :
(i) ρ(x , x) = 0.

(ii) ρ(x , y) = 0 =⇒ x = y .

(iii) ρ(x , y) = ρ(y , x).

(iv) ρ(x , z) ≤ ρ(x , y) + ρ(y , z) (triangle inequality).

If ρ satisfies (i), (iii), and (iv) it is called a pseudo-metric.

We say that (X , ρ) is a (pseudo-)metric space.

Norm balls. Let B(x , ε, ρ) = {x ′; ρ(x , x ′) ≤ ε}. .
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Some special cases

Let 1 ≤ p ≤ ∞.

Euclidean spaces. When X = Rd , we can define the `p norms as follows:

‖x‖p =

(
d∑

i=1

|xi |p
)1/p

, ‖x‖∞ = max
i∈[d ]
|xi |.

ρ(x , y) = ‖x − y‖p is a metric.

Function spaces. When X = RS = {f : f : S → R} for some set S, we define the Lp
norm for f ∈ X as follows:

‖f ‖p =

(∫
S
|f (s)|pds

)1/p

‖f ‖∞ = max
s∈S
|f (s)|.

ρ(f , y) = ‖f − g‖p is a metric.
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Covering numbers

Let (X , ρ) be a pseudo-metric space and let A ⊂ X . Let ε > 0. A set C ⊂ A is called
an ε-cover of A if, for all x ∈ A, there exists c ∈ C such that ρ(x , c) ≤ ε.

The ε-covering number is the size of the smallest ε-cover of A,

N(ε,A, ρ) = min {|C |; C is an ε-cover of A. }
The function ε 7→ log(N(ε,A, ρ)) is called the metric entropy of A.

Expl: Draw picture of covering and minimal covering.
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Packing numbers

Let (X , ρ) be a pseudo-metric space and let A ⊂ X . Let ε > 0. A set P ⊂ A is called
an ε-packing of A if, ρ(x , x ′) > ε (note strict inequality) for all x , x ′ ∈ P such that
x 6= x ′.

The ε-packing number is the size of the largest ε-packing of A,

M(ε,A, ρ) = max {|P|; P is an ε-packing of A. }

Expl: Draw picture of packing and maximal packing.
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Some useful results

Property. Let A ⊂ A′. Then, for any ε > 0, we have

N(ε,A, ρ) ≤ N(ε,A′, ρ), M(ε,A, ρ) ≤ M(ε,A′, ρ).

Proof. Any cover of A′ also covers A and any packing in A is also a packing in A′.

Theorem 1 (Packing-covering sandwich). For any ε > 0 and A ⊂ X , we have

M(2ε,A, ρ) ≤ N(ε,A, ρ) ≤ M(ε,A, ρ).

Proof. In HW0.
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Some useful results (cont’d)

For any A,A′ ⊂ Rd and α ∈ R, denote A + αA′ = {a + αa′; a ∈ A, a′ ∈ A′}.
Expl: Pause to check if people understand Minkowski addition.

Theorem 2 (Bounds in Euclidean spaces). Let X = Rd and let ‖ · ‖ be any norm.
Let B = {x ∈ Rd ; ‖x‖ ≤ 1} be the unit ball. Then,(

1

ε

)d vol(A)

vol(B)
≤ N(ε,A, ‖ · ‖) ≤ M(ε,A, ‖ · ‖) ≤

vol
(
A + ε

2B
)

vol
(
ε
2B
) . (1)

Moreover if A is a convex set and contains εB, then,

M(ε,A, ‖ · ‖) ≤
(

3

ε

)d vol(A)

vol(B)
. (2)
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Proof of Theorem 2

Denote B(x , ε) = B(x , ε, ‖ · ‖).

Middle inequality in (1): follows from the packing-covering sandwich.

Left inequality: Let C be any covering of A. We have A ⊂
⋃
c∈C
B(c, ε). Therefore

vol(A) ≤
∑
c∈C

vol(B(c , ε)) = |C |vol(εB) = |C |εdvol(B).

Here, we have used the fact that vol(αA′) = αdvol(A′) for any A′ ⊂ Rd .

Therefore, |C | ≥ 1
εd

vol(A)
vol(B) . Taking the minimum over all coverings C yields the result.

Expl: You can convince yourself that vol(αB) = αdvol(B) by drawing a
picture of a ball. In 1d, vol = 2r , in 2d, vol = πr2, in 3d, vol = 4

3πr
3.
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Proof of Theorem 2 (cont’d)

Right inequality in (1): Let P be any packing of A.

We have A + ε
2B ⊃

⋃
p∈P
B(p, ε/2). Therefore,

vol
(
A +

ε

2
B
)
≥
∑
p∈P

vol (B(p, ε/2)) = |P|vol
( ε

2
B
)
.

Therefore, |P| ≤ vol(A+ ε
2
B)

vol( ε2B)
. Now take maximum over all packings.

Result (2): We will show:(i) when εB ⊂ A, then A + ε
2B ⊂ A + 1

2A, (ii) when A is
convex, A + 1

2A ⊂
3
2A. Therefore, A + ε

2B ⊂
3
2A. Hence,

M(ε,A, ‖ · ‖) ≤︸︷︷︸
from (1)

vol
(
A + ε

2B
)

vol
(
ε
2B
) ≤

vol
(

3
2A
)

vol
(
ε
2B
) =

(3/2)dvol (A)

(ε/2)dvol (B)
=

(
3

ε

)d vol(A)

vol(B)
.
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Proof of Theorem 2 (cont’d)

Read at home.

Proof of (i) when εB ⊂ A, then A + ε
2B ⊂ A + 1

2A.

Suppose x ∈ A + ε
2B. Then, we can write x = a + ε

2b where a ∈ A and b ∈ B. Hence,
ε
2b ∈

1
2εB ⊂

1
2A. Therefore, x = a + ε

2b ∈ A + 1
2A.

Proof of (ii) when A is convex, A + 1
2A ⊂

3
2A.

Suppose x ∈ A + 1
2A. Then, we can write x = a + 1

2a
′ where a, a′ ∈ A.

As A is convex, A 3 2
3a + 1

3a
′ = 2

3x . Therefore, x ∈ 3
2A.

N.B. You can also check that A + 1
2A ⊃

3
2A for all A so A + 1

2A = 3
2A when A is

convex.
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Some useful results (cont’d)

Recall: Theorem 2. Let X = Rd and let ‖ · ‖ be any norm. Let B = {x ∈ Rd ; ‖x‖ ≤ 1} be
the unit ball. Suppose A is a convex set and contains εB. Then,(

1

ε

)d
vol(A)

vol(B)
≤ N(ε,A, ‖ · ‖) ≤ M(ε,A, ‖ · ‖) ≤

vol
(
A + ε

2B
)

vol
(
ε
2B
) ≤

(
3

ε

)d
vol(A)

vol(B)
.

A useful corollary of Theorem 2. Let X = Rd and let ε ≤ 1. For any norm ‖ · ‖ and
corresponding unit ball B = {x ∈ Rd ; ‖x‖ ≤ 1}, we have(

1

ε

)d

≤ N(ε,B, ‖ · ‖) ≤ M(ε,B, ‖ · ‖) ≤
(

1 +
2

ε

)d

≤
(

3

ε

)d

.

Expl: We established UBs using the packing number and LBs via the covering

number. But often we will need LBs on the packing number (Ch 1) and UBs

on the covering number (Ch 2). This is why the sandwich theorem is useful.
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Some useful results (cont’d)

Theorem 3. Let X = Rd and ε ≤ 1. Let p, q ∈ [1,∞]. Denote Br = {x ; ‖x‖r ≤ 1}.
Then, (

1

ε

)d vol(Bq)

vol(Bp)
≤ N(ε,Bq, ‖ · ‖p). (3)

Moreover, when q ≥ p, then

N(ε,Bq, ‖ · ‖p) ≤

(
3d1/p−1/q

ε

)d

. (4)

Some notes.

1. If you need a lower bound on the packing number, you can use (3) along with the
packing-covering sandwich.

2. Explicit expression for vol(Bq) in Rd :

vol(Bq) =

(
2 Γ(1 + 1/q)

)d
Γ
(
1 + d/q

) .
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Proof of Theorem 3

Recall: Theorem 2. Let X = Rd and let ‖ · ‖ be any norm. Let B = {x ∈ Rd ; ‖x‖ ≤ 1} be
the unit ball. Suppose A is a convex set and contains εB. Then,(

1

ε

)d
vol(A)

vol(B)
≤ N(ε,A, ‖ · ‖) ≤ M(ε,A, ‖ · ‖) ≤

vol
(
A + ε

2B
)

vol
(
ε
2B
) ≤

(
3

ε

)d
vol(A)

vol(B)
.

Proof. Inequality (3) follows directly from Theorem 2:

N(ε,Bq, ‖ · ‖p) ≥
(

1

ε

)d vol(Bq)

vol(Bp)
.

For inequality (4), we will use Theorem 2 again as follows,

N
( ε

d1/p−1/q
,Bp, ‖ · ‖p

)
≤

(
3d1/p−1/q

ε

)d
vol(Bp)

vol(Bp)
.

To complete the proof, we will show N(ε,Bq, ‖ · ‖p) ≤ N
(

ε
d1/p−1/q ,Bp, ‖ · ‖p

)
.
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Proof of Theorem 3 (cont’d)

Recall the following:

Property. Let A ⊂ A′. Then, ∀ ε > 0, N(ε,A, ρ) ≤ N(ε,A′, ρ), and M(ε,A, ρ) ≤ M(ε,A′, ρ).

Inequality. Let 1 ≤ p ≤ q. Then, in Rd , we have 1
d1/p ‖ · ‖p ≤ 1

d1/q ‖ · ‖q.

From the above inequality we have Bq ⊂ d1/p−1/qBp via the following argument:

d1/qBq =
{
d1/qx ; ‖x‖q ≤ 1

}
=

{
x ;

1

d1/q
‖x‖q ≤ 1

}
⊂
{
x ;

1

d1/p
‖x‖p ≤ 1

}
= d1/pBp.

The claim follows from the above property:

N(ε,Bq, ‖ · ‖p) ≤ N
(
ε, d1/p−1/qBp, ‖ · ‖p

)
= N

( ε

d1/p−1/q
,Bp, ‖ · ‖p

)
.
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Some useful results

Theorem 4. Denote Np(ε,A) = N
(
ε,A, 1

d1/p ‖ · ‖p
)

, and N∞(ε,A) = N (ε,A, ‖ · ‖∞).

Then,
N1(ε,A) ≤ N2(ε,A) ≤ · · · ≤ N∞(ε,A).

Proof. In HW0.
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Ch 0.5: Distances/Divergences Between Distributions

Let P,Q be probability distributions with densities or pmfs p, q.

1. Kullback-Leibler divergence:

KL(P,Q) =

∫
log
(p(x)

q(x)

)
p(x) dx

2. Total variation distance:

TV(P,Q) = sup
A
|P(A)− Q(A)|

3. L1 distance:

‖P − Q‖1 =

∫
|p(x)− q(x)|dx
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Distances/Divergences (cont’d)

4. Chi-squared divergence:

χ2(P,Q) =

∫
(p(x)− q(x))2

q(x)
dx = EQ

[(
p(X )

q(X )
− 1

)2
]

5. Hellinger distance:

H2(P,Q) =

∫
(
√
p(x)−

√
q(x))2dx = 2− 2

∫ √
p(x)q(x)dx

6. Affinity (measure of similarity):

‖P ∧ Q‖ =

∫
min(p(x), q(x))dx
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Relations Between Divergences

1. For n i.i.d samples:

KL(Pn,Qn) = nKL(P,Q), H2(Pn,Qn) = 2− 2

(
1− 1

2
H2(P,Q)

)n

.

2. TV(P,Q) = 1
2‖P − Q‖1 = 1− ‖P ∧ Q‖.

3. H2(P,Q) ≤ ‖P − Q‖1.

4. Pinsker’s inequality: TV(P,Q) ≤
√

1
2KL(P,Q).

5. KL(P,Q) ≤ χ2(P,Q).

6. Affinity bound: ‖P ∧ Q‖ ≥ 1
2e
−KL(P,Q).

We will prove 6. You will prove 1–5 in HW1.
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Proof: Affinity Bound via KL Divergence
Affinity bound: ‖P ∧ Q‖ ≥ 1

2e
−KL(P,Q)

2‖P ∧ Q‖ = 2

∫
min(p, q)

≥ 2

∫
min(p, q)−

(∫
min(p, q)

)2

=

∫
min(p, q)×

(
2−

∫
min(p, q)

)
=

∫
min(p, q)×

∫
max(p, q) As

∫
min(p, q) +

∫
max(p, q) =

∫
p +

∫
q = 2

≥
(∫ √

min(p, q) ·max(p, q)

)2

CS ineq:

(∫
uv

)2

≤
∫

u2

∫
v2

=

(∫ √
p · q

)2

= exp

(
2 log

(∫ √
p · q

))
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Proof: Affinity Bound via KL Divergence (cont’d)

Affinity bound: ‖P ∧ Q‖ ≥ 1
2e
−KL(P,Q).

2‖P ∧ Q‖ ≥ exp

(
2 log

(∫ √
p · q

))

= exp

(
2 log

(∫
p

√
q

p

))
≥ exp

(
2

∫
p log

(√
q

p

))
by Jensen’s ineq: log

(
EX∼P

[√
q(X )

p(X )

])
≥ EX∼P

[
log

(√
q(X )

p(X )

)]

= exp

(
−
∫

p log

(
p

q

))
= e−KL(P,Q).
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Examples of KL Divergence
1) If P = N (µ1, σ

2) and Q = N (µ2, σ
2), then KL(P,Q) = 1

2σ2 (µ1 − µ2)2.

2) If P = Bern (p) and Q = Bern (q), for p, q ∈ [0, 1], then

KL(P,Q) = p log(p/q) + (1− p) log((1− p)/(1− q))

Moreover, it satisfies:

2(p − q)2 ≤︸︷︷︸
Pinsker’s

KL(P,Q) ≤︸︷︷︸
KL ≤ χ2

(p − q)2

q(1− q)
.

If q is bounded away from 0 and 1, we have KL(P,Q) ∈ Θ((p − q)2).

Expl: If q ∈ (1/4, 3/4) (We will get to design distributions in alternatives),

then the UB is 16
3 (p − q)2. In both normal and Bernoulli, we have

KL(P,Q) � (µp − µq)2, which will be convenient when we construct

alternatives for our lower bound proofs → a general statement about

sub-Gaussian RVs, that the KL scales with the squared gap between means. 37/58



Ch 0.6: Information Theory

Let P be a distribution with density (pdf or pmf) p, and let supp (P) = X .

Entropy1. Let X have distribution P. Then,

H(X ) = H(P) = EX∼P [− log(p(X ))].

N.B. It is customary to write this as a function of a random variable H(X ), although it
is really a function of the distribution H(P).

For discrete and continuous RVs, we have respectively,

H(X ) = −
∑
x∈X

p(x) log(p(x)), H(X ) = −
∫
x∈X

p(x) log(p(x))udx

1Not to be confused with metric entropy. 38/58



Entropy (cont’d)

Some examples:

I Bern (p): H(X ) = −p log(p)− (1− p) log(1− p).

I N (µ, σ2): H(X ) = −1
2 log(2eπσ2).

Property. For discrete random variables, taking values in X , we have, (Proof: try at
home),

0 ≤ H(X ) ≤ log(|X |).

Expl: Left ineq: as p(x) ≤ 1, so log(1/p(x)) ≥ 1. Right ineq: by Jensen’s.

Some interpretations, when X is discrete:

I The measure of the spread/uncertainty in a random variable.

I The amount of information in a random variable.
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Joint and Conditional Entropy

Joint Entropy. Let random variables X ,Y have joint distribution P. The joint
entropy is defined as:

H(X ,Y ) = EX ,Y∼P [− log p(X ,Y )] .

Conditional Entropy. Let random variables X ,Y have joint distribution P. The
conditional entropy of X given Y is:

H(X | Y ) = EX ,Y∼P [− log p(X | Y )] .
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Conditional Entropy (cont’d)

To understand the conditional entropy further, let us consider discrete X ,Y and define:

H(X | Y = y) = −
∑
x∈X

p(x | y) log p(x | y).

Measures how much information/uncertainty is left in X after observing Y = y .

How much information does Y reveal about X on average?

EY ′∼PY

[
H(X | Y = Y ′)

]
=
∑
y∈Y

p(y)H(X | Y = y)

=
∑
x ,y

−p(x , y) log p(x | y)

= EX ,Y∼P [− log p(X | Y )]

= H(X | Y ).
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Conditional Entropy (cont’d)

Chain rule for conditional entropy. Let X1, . . . ,Xn,Y be random variables. Then,

1. H(X1, . . . ,Xn) =
∑n

i=1 H(Xi | X1, . . . ,Xi−1).

2. H(X1, . . . ,Xn | Y ) =
∑n

i=1 H(Xi | X1, . . . ,Xi−1,Y ).

Proof Sketch of (1). For two random variables, we have:

p(x1, x2) = p(x1) p(x2 | x1),

Therefore, log p(x1, x2) = log p(x1) + log p(x2 | x1).

Taking expectation on both sides yields:

H(X1,X2) = H(X1) + H(X2 | X1).

The general result follows by induction.
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KL Divergence and Mutual Information

KL Divergence (a.k.a. Relative Entropy). Let P and Q be two distributions.
Then, the KL divergence is defined as:

KL(P,Q) = EX∼P

[
log

(
p(X )

q(X )

)]
.

Expl: The KL is a measure of dissimilarity between P and Q.

Mutual Information. Let X ,Y have joint distribution PXY with marginals PX ,PY .
The MI is the KL between the joint distribution and the product of its marginals:

I (X ,Y ) = KL(PXY ,PX × PY ) = E
[

log

(
pX ,Y (X ,Y )

pX (X ) pY (Y )

)]
.

I (X ,Y ) measures how much information X has about Y , and vice versa.

Expl: How much can I learn about X by knowing Y .

Note weird convention again: KL(P,Q) vs I (X ,Y ).
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Properties of KL Divergence and Mutual Information (1/3)

1. Symmetry of Mutual Information: I (X ,Y ) = I (Y ,X ).

2. Non-negativity of KL divergence: KL(P,Q) ≥ 0, with equality iff P = Q.

Proof: Write KL(P,Q) = EP

[
− log

(
q(X )
p(X )

)]
and apply Jensen’s inequality.

3. Non-negativity of Mutual Information: I (X ,Y ) ≥ 0, with equality iff X ⊥ Y .

Proof: From property (2), I (X ,Y ) = KL(PXY ,PXPY ) ≥ 0. Equality holds when
PXY = PXPY , i.e. X ⊥ Y .
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Properties of KL Divergence and Mutual Information (2/3)

4. MI as Reduction in Entropy:

I (X ,Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ).

Proof: From the definition:

I (X ,Y ) = EX ,Y

[
log

(
p(X ,Y )

pX (X )pY (Y )

)]
= EX ,Y

[
log

(
p(X |Y )pY (Y )

pX (X )pY (Y )

)]
= H(X )− H(X |Y ).

5. Conditioning reduces entropy: H(X |Y ) ≤ H(X ).

Proof: From (4), we have H(X )− H(X |Y ) = I (X ,Y ) ≥ 0.

Expl: Knowing Y reduces uncertainty in X on average, but for a specific

Y = y, it’s possible to have H(X |Y = y) > H(X ).
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Properties of KL Divergence and Mutual Information (3/3)

6. MI via Joint Entropy:

I (X ,Y ) = H(X ) + H(Y )− H(X ,Y ).

Proof: By the chain rule, H(X ,Y ) = H(Y ) + H(X |Y ). Substituting into property
(4): I (X ,Y ) = H(X )− H(X |Y ) = H(X ) + H(Y )− H(X ,Y ).

7. Self-information property:

I (X ,X ) = H(X ).

Proof: Using property (4), I (X ,X ) = H(X )− H(X |X ). Since H(X |X ) = 0, we
get I (X ,X ) = H(X ).
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Conditional Mutual Information and Chain Rule

Conditional Mutual Information. Let X ,Y ,Z have joint distribution P. Then,

I (X ,Y |Z ) = H(X |Z )− H(X |Y ,Z ) = EX ,Y ,Z∼P

[
log

(
p(X ,Y |Z )

p(X |Z ) p(Y |Z )

)]
.

Interpretation: Measures how much information X and Y share given Z .

Chain Rule for Mutual Information. For random variables X1, . . . ,Xn and Y :

I ((X1, . . . ,Xn),Y ) =
n∑

i=1

I (Xi ,Y |X1, . . . ,Xi−1) .
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Chain Rule for MI

Chain Rule for Mutual Information. For random variables X1, . . . ,Xn and Y :

I ((X1, . . . ,Xn),Y ) =
n∑

i=1

I (Xi ,Y |X1, . . . ,Xi−1) .

Proof (for n = 2).

I ((X1,X2),Y ) = H(X1,X2)− H(X1,X2|Y ) By property 4 above.

= H(X1) + H(X2|X1) − (H(X1|Y ) + H(X2|X1,Y )) ,

Chain rule for entropy.

= H(X1)− H(X1|Y )︸ ︷︷ ︸
I (X1,Y )

+ H(X2|X1)− H(X2|X1,Y )︸ ︷︷ ︸
I (X2,Y |X1)

.
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Data Processing Inequality

Data Processing Inequality. Let X ,Y ,Z be random quantities such that
X ⊥ Z | Y . Then, I (X ,Y ) ≥ I (X ,Z ). And hence, H(X |Y ) ≤ H(X |Z ).

Proof. We will apply the chain rule for MI in two ways:

I (X , (Y ,Z )) = I (X ,Z ) + I (X ,Y |Z ) = I (X ,Y ) + I (X ,Z |Y ).

Since X ⊥ Z | Y , we have I (X ,Z |Y ) = 0. Also, I (X ,Y |Z ) ≥ 0. Hence,

I (X ,Y ) ≥ I (X ,Z ).

For the conditional entropy statement, note that by property 4:

H(X )− H(X |Z ) = I (X ,Z ) ≤ I (X ,Y ) = H(X )− H(X |Y ),

which implies H(X |Y ) ≤ H(X |Z ).
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Ch 0.7: Convex Analysis

Definition (Convex set). A set Ω ⊂ Rd is called convex if, for every two points
ω, ω′ ∈ Ω and every α ∈ [0, 1], we have αω + (1− α)ω′ ∈ Ω.
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Convex functions

Definition (convex function)
- A function f : Ω→ R is convex if Ω is a convex set and ∀α ∈ [0, 1] and all u, v ∈ Ω
we have, f (αu + (1− α)v) ≤ αf (u) + (1− α)f (v).

- Equivalently, f is convex if, for all ω ∈ Ω, there exists g ∈ Rn such that ∀ω′ ∈ Ω, we
have f (ω′) ≥ f (ω) + g>(ω′ − ω).
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Subgradients and Subdifferentials

Convex function: A function f is convex if, for all ω ∈ Ω, there exists g ∈ Rn such that

∀ω′ ∈ Ω, we have f (ω′) ≥ f (ω) + g>(ω′ − ω).

Any g which satisfies the theorem above is called a subgradient of f at ω.

The set of all subgradients of ω are called the subdifferential, and denoted ∂f (ω).

Some useful facts about subgradients: (Proofs: Try at home)

- If f is differentiable at ω, then ∂f (ω) = {∇f (ω)}.

- 0 ∈ ∂f (ω) ⇐⇒ ω ∈ argminω′∈Ω f (ω′).

- If g1 ∈ ∂f1(ω) and g2 ∈ ∂f2(ω), then

αg1 + βg2 ∈ ∂(αf1 + βf2) for all α, β ∈ R
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Strong convexity

Convex function: A function f is convex if, for all ω ∈ Ω, there exists g ∈ Rn such that

∀ω′ ∈ Ω, we have f (ω′) ≥ f (ω) + g>(ω′ − ω).

Expl: The last part is extra on top of usual convex definition.

Definition (strong convexity) A convex function f : Ω→ R is α–strongly convex in
some norm ‖ · ‖ if, f (ω′) ≥ f (ω) + g>(ω′ − ω) + α

2 ‖ω
′ − ω‖2 ∀ g ∈ ∂f (ω).

Remark. If f is strongly convex in ‖ · ‖2, this is equivalent to saying that f (ω)− α
2 ‖ω‖

2
2

is convex, i.e f is at least as convex as a quadratic function.

Define h(ω) = f (ω)− α
2 ‖ω‖

2
2. Then, g ∈ ∂f (ω) ⇐⇒ g − αω ∈ ∂h(ω).

h(ω′) ≥ h(ω) + (g − αω)>(ω′ − ω) ⇐⇒

f (ω′)− α

2
‖ω′‖2

2 ≥ f (ω)− α

2
‖ω‖2

2 + (g − αω)>(ω′ − ω) ⇐⇒

f (ω′) ≥ f (ω) + g>(ω′ − ω) +
α

2
‖ω − ω′‖2

2.
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Strong convexity examples

Example 1. f (ω) = 1
2‖ω‖

2
2 is 1–strongly convex in ‖ · ‖2.

Proof. As 1
2‖ω‖

2
2 − 1

2‖ω‖
2
2 = 0 is convex.

Example 2. The negative entropy f (ω) =
∑K

i=1 ω(i) log(ω(i)) is 1–strongly-convex in
‖ · ‖1, when Ω = ∆([K ]) = {ω ∈ RK

+; 1>ω = 1}.

Proof. As f is differentiable, ∂f (ω) = {∇f (ω)}. Therefore, we need to show, for all
ω, ω′ ∈ ∆([K ]), we have

f (ω′) ≥ f (ω) +∇f (ω)>(ω′ − ω) +
1

2
‖ω′ − ω‖2

1.

⇐⇒ f (ω′)− f (ω)−∇f (ω)>(ω′ − ω) ≥ 1

2
‖ω′ − ω‖2

1.

Note that
∂f (ω)

∂ω(i)
= 1 + log(ω(i)).
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Strong convexity examples (cont’d)
We need to show, for all ω, ω′ ∈ ∆([K ]), we have

f (ω′)− f (ω)−∇f (ω)>(ω′ − ω) ≥ 1

2
‖ω′ − ω‖2

1.

We just showed ∂f ω(i))
∂ω(i) = 1 + log(ω(i)).

Therefore,

LHS =
K∑
i=1

ω′(i) log(ω′(i))−
K∑
i=1

ω(i) log(ω(i))−
K∑
i=1

(1 + log(ω(i)))(ω′(i)− ω(i))

=
K∑
i=1

ω′(i) log

(
ω′(i)

ω(i)

)
= KL(ω′, ω) ≥ 1

2
‖ω′ − ω‖2

1.

The last step follows by Pinsker’s, KL(P,Q) ≥ 2TV(P,Q)2 = 2
(

1
2‖P − Q‖1

)2
.

55/58



Some useful properties about strongly convex functions

1. If f1 is α-strongly convex and f2 is convex then βf1 + f2 is (βα)–strongly convex.

Proof. Try at home

2. If ω? = argminω∈Ω f (ω), where f is α–strongly convex with respect to ‖ · ‖, then
f (ω) ≥ f (ω?) + α

2 ‖ω − ω?‖
2.

Proof. By definition of strong convexity,

f (ω) ≥ f (ω?) + g>(ω − ω?) +
α

2
‖ω − ω?‖2, for all g ∈ ∂f (ω?).

Claim follows by noting 0 ∈ ∂f (ω?).
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Dual norm

Definition (dual norm) Given a norm ‖ · ‖, the dual norm ‖ · ‖? is defined as

‖ω‖? = max
‖u‖≤1

u>ω.

Examples of dual norm pairs: (‖ · ‖2, ‖ · ‖2), (‖ · ‖1, ‖ · ‖∞).

For the 2-norm,

‖ω‖? = max
‖u‖2≤1

u>ω =

(
ω

‖ω‖2

)>
ω = ‖ω‖2.

For the ∞-norm,
‖ω‖? = max

‖u‖∞≤1
u>ω = 1>|ω| = ‖ω‖1.

Expl: You can show that dual-norms are symmetric too.
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Dual norm (cont’d)

‖ω‖? = max
‖u‖≤1

u>ω.

Hölder’s inequality For all a, b ∈ Rd , we have a>b ≤ ‖a‖ · ‖b‖?.

Proof.

a>b = b>
(

a

‖a‖

)
‖a‖

≤ ‖a‖ max
ω,‖ω‖≤1

b>ω

= ‖a‖ · ‖b‖?.
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