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These slides give a quick overview of some background topics for the course. We will
cover some in class, but you are encouraged to review the rest on your own.

Some common inequalities

. Bayesian inference

. Sub-Gaussian random variables

Covering and packing numbers

. Distances and divergences between distributions

. Information theory

Convex analysis
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Ch 0.1: Some common inequalities

Basic Logarithmic and Exponential Inequalities.
» Forall x > —1,

m =

> For all real x and all positive integers n,

X

e > (1+f>n > 1+ x.
n

» For x> —1and r > 1,
(I+x)" >1+rx.

When r € [0, 1], the reverse holds.

< log(1+x) < x.
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Classical Inequalities: Holder, Cauchy—Schwarz, Minkowski
1/
Let x,y € RY. Define ||x|, = (27’:1 |x,-yp) ? for p € [L,00) and [|x]|ec = max; [x;].

» Holder's inequality: for p, g such that p,qg > 1 and % + % =1,
Ixylle < lixllp - llyllq-

» Cauchy-Schwarz inequality: Holder when p = g = 2:
(xy) < lIxllz llyll-

» Minkowski's inequality (triangle inequality for ¢P-spaces). Let 1 < p < co. Then,

Ix+ylle < lixllp +llylp
> Let 1 < p<g<oo. Then, (Proof in HWO0)

1 1
bellg < flxllp, and  —2lixllp < —72 lixlq.
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Jensen’s and Harris' Inequalities

Jensen’s inequality. Let f be a convex function and X be an integrable random
variable. Then f(E[X]) < E[f(X)]. Similarly, if f is a concave function,
F(EIX]) > E[f(X)].

Harris’ covariance inequality. Let X be a random variable, and let f and g be
real-valued functions that are both non-decreasing. Then,

E[f(X)g(X)] = E[f(X)] E[g(X)].
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Ch 0.2: Bayesian Inference

Frequentist approach. In the frequentist paradigm, a parameter of interest 6 is fixed
and unknown. Statistical inference targets objective estimation: ask how well data can
estimate 6 via sampling distributions, confidence intervals, hypothesis tests, etc.
Example: Problem 1 in HWO for normal mean estimation.

Bayesian approach.
» Here, 0 is treated as a random variable taking values in ©.

> A learner’s prior knowledge/beliefs about 6, before seeing data, are captured by a
prior distribution ().

» Once the data X = x are observed, the prior is updated with the observed data
via the likelihood px|g(x | 0), yielding a posterior distribution (6 | x).

In this class, we will mostly focus on the frequentist paradigm but will use Bayesian

inference for proving lower bounds (Chapter 1).
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Bayesian Setup: General Formulation

Given data X = x, we have:

Prior: m(0), Learner’s prior beliefs about 6.
Likelihood: pxg(x | 0),
Probability of observing data x given that the parameter is 0.
px|o(x | 8) w(6)
[ pxiotx | 0)(0) 0

Learner’s beliefs about 6 after observing data.

Posterior: 7(6 | x) = o pxje(x | 0) w(0).

From the posterior, one can derive point estimates (e.g., posterior mean, mode) or
credible intervals.
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Example 1: Beta prior, Binomial likelihood
Prior ().

1

0 € (0,1), 7(0) = Beta(a, 8) : mw(0) = B(a, B)

611 —9)P L,

Likelihood p,s(x | ).

X | @ ~ Binomial(n, §), x € {0,...,n}, Pjo(x | 0) = <)’:> X(1 — 0)" .
Posterior (0 | x).
(0] x) pX|9(X | ) m(6) o [gx(l_e)nfx] [eafl(l_g)/ﬁfl] _ 0a+x71(1_0)5+n7x71.

Thus, m(6 | x) = Beta(a + x, B+ n— x).
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Example 2: Normal prior and likelihood

Prior (). ,
i~ N(pio, 72), (1) o exp (—“““‘”) |

272

Likelihood py,,(x | ).

iid no_
X | N (u0?), so p(x | ) ox exp (—5o5(% = )?).
Posterior 7(x | x) is a normal distribution (Proof in HWO0)
_ [ T Po + (nfo?)% 1
ﬂ(/”x)_N( 72+n/o2 ' 12+4+n/02)"
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Bayes' risk and Bayes' estimator

Definition. Given loss £(0, a) for estimating ¢ with a, the risk (expected loss) of an
estimator 0 is

-~ ~

Rmﬁ):Emamx»y:E{mdaaax»|ﬂ]

An estimator § which minimizes R(w,g), if it exists, is called the Bayes’ estimator.

-~

The minimum value R(m, @) is called the Bayes’ risk.

Computing the Bayes’ estimator. Let us write,

~

Rmm:m@ﬂmﬂmnﬂy

*)

—

If we can find an estimator 6 which minimizes (x) for all X, it is the Bayes' estimator.
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Bayes' Estimator (cont'd)

Squared loss. When (01, 02) = (61 — 62)? is the squared loss, the Bayes' estimator is
the posterior mean 95(X) = E[0]X].

Proof. Define 5(X) = E[0|X]. Consider any other estimator g

Ep[(6/(X) — 6(P))?|X] = Ep[(0' — 6)?|X] here, 0'(X)— 0, 6(P)— 6.

= Ep[(0 — 0)2 + (6 — 0)> +2(8 — 0)(6 — 0)|X]

= Ep[(#' — 0)%|X] + Ep[(0 — 0)%|X] + 2(6 — O)E[(6 — 0)|X]
9 0 are functions of X.

= Ep[(0' — 0)*|X] + Ep[(0 — 0)?|X] as 0=Ep[0]X].

> Ep[(0 - 0)2|X].

Absolute loss. When ¢(01,602) = |01 — 03| is the absolute loss, the Bayes' estimator is

the posterior median. (Proof: try at home)
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Ch 0.3: Sub-Gaussian concentration
We will start with some common probability inequalities

Union bound. For any events Aj, As, ..., Ap,

Pr(LnJ A,-) < zn:Pr(A,-).
i=1

i=1

Markov’s inequality. Let X be a non-negative random variable and let a > 0. Then

Pr(X >a) < IE[aX]'

Chebyshev’s inequality. Let X be any random variable with finite mean p = E[X]
and finite variance 02 = Var(X). For any b > 0,

2
Pr(X —pul > b) < 5.
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Sub-Gaussian Random Variables (cont'd)

Sub-Gaussian random variables. If a random variable X satisfies

E [et(X—E[X])} < e”i—fQ’

for all t € R, then it is said to be o-sub-Gaussian.

Intuitively, the tail decays at least as fast as a N'(0,02) RV.
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Sub-Gaussian Random Variables (cont'd)

Sub-Gaussian concentration. If X is o-sub-Gaussian, then

2 2

P(X —E[X] > ¢) <ea?,  P(X—E[X] < —¢) < ea.
Proof. Assume E[X] = 0, for simplicity. Then, for all t,

P(X > ¢) =P <etX > e“)

- Eﬂ[et)<]

for Z>0

E[Z
by Markov inequality, P(Z > a)SQA%;l

ete
< e%t20'2—t€

sub-Gaussianity definition, true for all t.

By choosing t = ¢/a? to minimize the exponent, we have,

2
P(X >¢€) < e2?.
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Sub-Gaussian Random Variables (cont'd)

Some examples:
> If X ~ N(,02), then X is o-sub-Gaussian.

> If supp (X) C [a, b], then X is 1(b — a)-sub-Gaussian. Sub-Gaussian
concentration is Hoeffding's inequality.

Some properties of sub-Gaussian RVs: (Proofs: try at home)
1) Let a € R. If X is o-sub-Gaussian, then aX is |a|o-sub-Gaussian.

2) If Xq,...,X, are independent sub-Gaussian RVs with constants o1, ...,0,, then
Sor i Xiis \/m sub-Gaussian.

3) If Xi,...,X, are independent o-sub-Gaussian RVs, then

ex .

- Z (Xi — E[Xi])

(|

1
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Sub-Gaussian Random Variables (cont'd)

The maximal inequality. Let Z3,...,Z, be zero mean o-sub-Gaussian random
variables (not necessarily independent). Then,

E [max Z,-] < o+/2log(n).

i€[n]

Proof. The following holds for all t:

exp | tE |max Z; < E |exp | tmax Z; By Jensen’s and concavity of exp
ie[n] L ie[n]

— E |max et
Li€ln]
[ n

<E Z etZ"]
Li=1
t20'2

<ne 2 Sub-Gaussianity
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Proof of maximal inequality (cont'd)

We just showed,

exp (tE {max Z;

i€[n]

Taking log on both sides, we have, for all t,

2
E [m[a>]<2i] < log(n) + L
1€[Nn

Choosing t = 1,/2log(n) to minimize the RHS, gives the bound.

t 2
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McDiarmid’s inequality

Let X1, Xz, ..., X, be independent random variables such that X; € &} for all i. Let
f:Xx x--- x X, — R satisfy the bounded differences condition: for each i, there
exists ¢; such that for all x1,x2,...,xj,x/,...,xn, we have,

‘f(x1,...,x,',...,x,,) — f(xl,...,x,{,...,x,,)‘ < ¢
Then for any t > 0,
Pr(F(Xe, .., Xo) —E[f(X, ... X,)] > 1) < exp<_ 22>

Pr(F(Xe,... Xo) — E[f (X, Xn)] < —t) < exp<— 2”22>
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Ch 0.4: Covering and Packing Numbers

Metric. Let X be asetandlet p: X x X — R, be a function. We say p is a metric
if it satisfies the following four properties for all x,y,z € X

(i) plx.x) =0,

i) p(x,y) =0 = x=y.

(
(iii) p(x,y) = p(y, x).
(

iv) p(x,z) < p(x,y) + p(y, z) (triangle inequality).

If p satisfies (i), (iii), and (iv) it is called a pseudo-metric.
We say that (X, p) is a (pseudo-)metric space.

Norm balls. Let B(x, ¢, p) = {x; p(x,x") < €}.
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Some special cases

Let 1 < p < 0.

Euclidean spaces. When X' = R9, we can define the £, norms as follows:
d 1/p
Xllp = xi|P ) X|loo = max |xj].
Il <le 1 ) Ixloe = max
p(x,y) = |Ix — yllp is a metric.

Function spaces. When X =R = {f : f : S — R} for some set S, we define the L,
norm for f € & as follows:

1/p
1Fllp = ( / |f(s)|Pds) 1Flloe = max|£(s)!
S seS

p(f,y) = |If —gllp is a metric.
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Covering numbers

Let (X, p) be a pseudo-metric space and let A C X. Let e > 0. Aset C C Ais called
an e-cover of A if, for all x € A, there exists ¢ € C such that p(x, c) < e.

The e-covering number is the size of the smallest e-cover of A,

N(e, A, p) = min{|C|; C is an e-cover of A. }
The function € — log(N(e, A, p)) is called the metric entropy of A.
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Packing numbers

Let (X, p) be a pseudo-metric space and let AC X. Let e > 0. A set P C Ais called
an e-packing of A if, p(x, x’) > e (note strict inequality) for all x,x’ € P such that

x # x'.
The e-packing number is the size of the largest e-packing of A,

M(e, A, p) = max {|P|; P is an e-packing of A. }
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Some useful results

Property. Let A C A’. Then, for any € > 0, we have
N(e, A p) < N(e, A, p),  M(e, A, p) < M(e, A, p).

Proof. Any cover of A’ also covers A and any packing in A is also a packing in A’.

Theorem 1 (Packing-covering sandwich). For any ¢ > 0 and A C X, we have
M(2¢, A, p) < N(e, A, p) < M(e, A, p).

Proof. In HWO.
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Some useful results (cont'd)
Forany A,A C R? and a € R, denote A+ aA' = {a+ad;ac A d € A}

Theorem 2 (Bounds in Euclidean spaces). Let X = R9 and let || - || be any norm.
Let B = {x € RY ||x|| < 1} be the unit ball. Then,

vol (A + %B)
vol (%B) ’

d
() 298 < e 1) < mee A ) < W

e ) vol(B)

Moreover if A is a convex set and contains eB, then,

d
mea = () 2. @)
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Proof of Theorem 2

Denote B(x,€) = B(x, ¢, || - ||
Middle inequality in (1): follows from the packing-covering sandwich.

Left inequality: Let C be any covering of A. We have A C U B(c,€). Therefore
ceC

vol(A) <3 vol(B( = |C|vol(eB) = |C|e?vol(B).
ceC

Here, we have used the fact that vol(aA’) = a9vol(A") for any A’ C RY.

Therefore, |C| > {,:,’giEA% Taking the minimum over all coverings C yields the result.
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Proof of Theorem 2 (cont'd)

Right inequality in (1): Let P be any packing of A.
We have A+ 5B D U B(p,€/2). Therefore,

peP
vol (A+ <B) > vol (B(p, €/2)) = |P|vol
a18) = S o)
Vol(A+ B)

Therefore, |P| < W Now take maximum over all packings.
2

Result (2): We will show:(i) when eB C A, then A+ 5B C A+ 1A, (ii) when A is
convex, A+ %A - %A. Therefore, A+ 5B C %A. Hence,

A)  (3/2)%vol(A) <3>d vol(A)

B) ~ (¢/2)vol(B)

€

vol (A+ %B) < vol(

fro\m/(/l) vol (EB) vol (

M(e, A 11 -1)

Nl [N]w

vol(B)’
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Proof of Theorem 2 (cont'd)

Read at home.

Proof of (i) when eB C A, then A+ $B C A+ JA.

Suppose x € A+ 5B. Then, we can write x = a+ 5b where a € A and b € B. Hence,
$be 1eB C 1A. Therefore, x =a+ 5b € A+ JA.

Proof of (ii) when A is convex, A+ 3A C %A.

Suppose x € A + %A. Then, we can write x = a + %a’ where a,a’ € A.
As A is convex, A > %a + %a’ = %x. Therefore, x € %A.

N.B. You can also check that A + %A D %A for all Aso A+ %A = %A when A is
convex.
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Some useful results (cont'd)

Recall: Theorem 2. Let X = R? and let || - || be any norm. Let B = {x € RY; ||x|| < 1} be
the unit ball. Suppose A is a convex set and contains ¢B. Then,

d = 7 5o
(1) 25 < NeAl < M Al < W <(3) Sia

A useful corollary of Theorem 2. Let X = R? and let ¢ < 1. For any norm || - || and
corresponding unit ball B = {x € R?; ||x|| < 1}, we have

<1>d < N(e B+ ) < M(e.B. - ) < <”i>d - <3>d
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Some useful results (cont'd)

Theorem 3. Let ¥ =R? and € < 1. Let p,q € [1,00]. Denote B, = {x; ||x||, < 1}.

Then,
1\ vol(B,)
- <N . .
(3) SEY < M- o) ©
Moreover, when g > p, then J
3dl/p—1/q
N(eBg. |- lp) < [ = 4)

Some notes.
1. If you need a lower bound on the packing number, you can use (3) along with the
packing-covering sandwich.

2. Explicit expression for vol(B,) in R:

(2r(1+1/q))’

vol(Bq) = (1+d/q)
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Proof of Theorem 3

Recall: Theorem 2. Let X = R? and let || - || be any norm. Let B = {x € RY; ||x|| < 1} be

the unit ball. Suppose A is a convex set and contains e¢B. Then,

e) vol(B) vol (£B)

Proof. Inequality (3) follows directly from Theorem 2:

d
el 1) > (7)o

€

For inequality (4), we will use Theorem 2 again as follows,

N € B 3dl/p-1/a dVOl(Bp)
(G Bl ) < (") Gy

d €
(1> VlA) e A - ) < M(eA, |- ) < AT EB) (3

y

vol(A)
vol(B)’

To complete the proof, we will show N(e, By, | - [|p) < N (W,Bp, |- H,,).
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Proof of Theorem 3 (cont'd)

Recall the following:
Property. Let AC A’. Then, Ve >0, N(e, A, p) < N(e, A, p), and M(¢, A, p) < M(e, A, p).
Inequality. Let 1 < p < g. Then, in R, we have E%EH'HP < E%E”'Hq‘

From the above inequality we have By C dl/pfl/qu via the following argument:

1
dl/qu = {dl/qx; Ixllg <1 } = {X; WHXHq <1 }
1
C {X; WHXHP <1 } - dl/po'

The claim follows from the above property:

€

N(e.Bas |- lIp) < N (e a2 9By, | - ) = N (770 Bos - )
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Some useful results

Theorem 4. Denote Ny(c, A) = N (e,A
Then,

sl ) and No(e, A) = N (€, A, | - ).
- <

N]_(E, A) < N2(€7 A)
Proof. In HWO0.
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Ch 0.5: Distances/Divergences Between Distributions

Let P, Q be probability distributions with densities or pmfs p, q.

1. Kullback-Leibler divergence:
_ p
KL(P, Q) = /Iog (—q )p(x) dx

2. Total variation distance:

TV(P, Q) = sup [P(A) = Q(A)]

3. L; distance:

1P~ @l = [ 1p(x) — ax)lox
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Distances/Divergences (cont'd)

4. Chi-squared divergence:

XZ(PaQ):/WdXzEQ

)
(53]
5. Hellinger distance:

H(P.Q) = [ (vl ~ v/al)Vdx =22 [ /alx)dx
6. Affinity (measure of similarity):

1P AQ| = / min(p(x), q(x))dx
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Relations Between Divergences

1. For ni.i.d samples:

KL(P",Q") = nKL(P,Q), H*(P",Q")=2-2 (1 - %H2(Pa Q)) :

2. TV(P,Q)=L|P-Qlli=1—[[PAQ].
3. H3(P,Q) < |P - Q|1

4. Pinsker's inequality: TV(P, Q) < 1/1KL(P, Q).

5. KL(P, Q) < x*(P, Q).
6. Affinity bound: ||P A Q| > §e_KL(PvQ).

We will prove 6. You will prove 1-5 in HW1.
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Proof: Affinity Bound via KL Divergence
Affinity bound: [|[P A Q| > %e—KL(P,Q)

2P A Q| =2 / min(p, q)

> z/min(p, q) — </ min(p, q))2
Z/min(p, q) x <2—/min(p, q))

= [ min(p, q) x /maX(P, q) As /min(p, q)+/ma><(p, q) = p+/q:2

3
5
—~~
RS
Q
N
3
[29)
X
—~
RS
Q
N
N—
N
Q
155
=
©
Q



Proof: Affinity Bound via KL Divergence (cont'd)

Affinity bound: ||P A Q| > $e KL(P.Q),

2P A Q|| > exp <2|0g </\/ﬁ>)

)
cenfof o)

by Jensen’s ineq: log | Ex.p

= exp (—/plog <Z>> — e KL(P.Q),
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Examples of KL Divergence

1) If P=N(u1,0?) and Q = N(p2,02), then KL(P, Q) = 515 (11 — p2)?.

2) If P =Bern(p) and Q = Bern(q), for p, g € [0, 1], then

KL(P, Q) = plog(p/q) + (1 — p)log((1 — p)/(1 — q))

Moreover, it satisfies:

2

Ap-qP < KL(P,Q) < L9
~~ <~ q(1-q)
Pinsker’'s KL < x?

If g is bounded away from 0 and 1, we have KL(P, Q) € ©((p — q)?).
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Ch 0.6: Information Theory

Let P be a distribution with density (pdf or pmf) p, and let supp (P) = X.
Entropy!. Let X have distribution P. Then,

H(X) = H(P) = Ex~p[— log(p(X))].

N.B. It is customary to write this as a function of a random variable H(X), although it
is really a function of the distribution H(P).

For discrete and continuous RVs, we have respectively,

HX) = = 3 p(lo(p(x)).  HX) == [ p(x)log(p()uds

xeX

!Not to be confused with metric entropy. 38/58



Entropy (cont'd)

Some examples:
> Bern (p): H(X) = —plog(p) — (1 — p) log(1 — p).
> N(p,02): H(X) = —1log(2era?).
Property. For discrete random variables, taking values in X', we have, (Proof: try at

home),
0 < H(X) < log(|X]).

Some interpretations, when X is discrete:
» The measure of the spread/uncertainty in a random variable.
» The amount of information in a random variable.
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Joint and Conditional Entropy

Joint Entropy. Let random variables X, Y have joint distribution P. The joint
entropy is defined as:

H(X,Y) = Ex, y~p[-logp(X, Y)].

Conditional Entropy. Let random variables X, Y have joint distribution P. The
conditional entropy of X given Y is:

H(X | Y) = Ex.yp[—logp(X | Y)].
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Conditional Entropy (cont'd)

To understand the conditional entropy further, let us consider discrete X, Y and define:

HIXTY =y) == p(x|y)logp(x|y).

xXeX

Measures how much information/uncertainty is left in X after observing Y = y.

How much information does Y reveal about X on average?

Eyrpy [HX Y =Y)] =Y p(y) HX | Y =y)
yey

—Z p(x,y)logp(x | y)

= EX,YNP [— |ng(X ’ Y)]
= H(X | Y).
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Conditional Entropy (cont'd)

Chain rule for conditional entropy. Let Xi,...,X,, Y be random variables. Then,

1 H(X1, .., Xe) = S HOXG | X1, Xic1).
2 H(X1,.. Xn | Y) =0 HXG | X, .., Xiz1, Y).

Proof Sketch of (1). For two random variables, we have:

p(x1, x2) = p(x1) p(x2 | x1),

Therefore, log p(x1, x2) = log p(x1) + log p(x2 | x1)-

Taking expectation on both sides yields:
H(X1, X2) = H(X1) + H( Xz | X1).

The general result follows by induction.
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KL Divergence and Mutual Information

KL Divergence (a.k.a. Relative Entropy). Let P and Q be two distributions.
Then, the KL divergence is defined as:

KL(P, Q) = Ex.p [Iog <288>] .

Mutual Information. Let X, Y have joint distribution Pxy with marginals Px, Py.

The Ml is the KL between the joint distribution and the product of its marginals:

(X, Y) measures how much information X has about Y, and vice versa.

/(X, Y) = KL(ny, PX X Py) = E[|Og (
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Properties of KL Divergence and Mutual Information (1/3)

1. Symmetry of Mutual Information: /(X,Y) = I(Y, X).

2. Non-negativity of KL divergence: KL(P, Q) > 0, with equality iff P = Q.

Proof: Write KL(P, Q) = Ep [— Iog(%)} and apply Jensen's inequality.

3. Non-negativity of Mutual Information: /(X, Y) > 0, with equality iff X L Y.

Proof: From property (2), I(X,Y) = KL(Pxy, PxPy) > 0. Equality holds when
ny = PXpy, ie. X LY.
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Properties of KL Divergence and Mutual Information (2/3)
4. MI as Reduction in Entropy:

I(X,Y) = H(X) — H(X|Y) = H(Y) — H(Y|X).

Proof: From the definition:

106, ¥) = By [log( ST

px(X)py(Y)

) oe [ PXIY)PY(Y)
= Ex,v[l g< px(X)py(Y) ﬂ
= H(X) — H(X]Y).

5. Conditioning reduces entropy: H(X|Y) < H(X).
Proof: From (4), we have H(X) — H(X|Y) = I(X,Y) > 0.
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Properties of KL Divergence and Mutual Information (3/3)

6. MI via Joint Entropy:
I(X,Y)=H(X)+ H(Y)— H(X,Y).

Proof: By the chain rule, H(X,Y) = H(Y) + H(X|Y). Substituting into property
(4): I(X,Y)=H(X)—H(X|Y)=H(X)+ H(Y) — H(X,Y).

7. Self-information property:

Proof: Using property (4), (X, X) = H(X) — H(X]|X). Since H(X|X) =0, we
get (X, X) = H(X).
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Conditional Mutual Information and Chain Rule

Conditional Mutual Information. Let X, Y, Z have joint distribution P. Then,

I(X, Y|Z) = H(X|Z) = H(X|Y,Z) =Exy zvp ['°g<p(§(r)z<3:(|€|)2)” '

Interpretation: Measures how much information X and Y share given Z.

Chain Rule for Mutual Information. For random variables Xi,..., X, and Y-

n

(X, X), Y) =D (X, Y[ X, Xi).
i=1
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Chain Rule for Ml

Chain Rule for Mutual Information. For random variables Xi,..., X, and Y-

(X1, ..., %), Y) = Z I, Y | Xe, o Xie1)
i=1

Proof (for n = 2).

1((X1,X2),Y) = H(X1, X2) — H(X1, X2]Y) By property 4 above.
= H(X1) + H(X2|X1) — (H(X1|Y) + H(X2| X1, Y)),
Chain rule for entropy.
— H(X1) — HOGY) + HOGIX) — HOXG|X1, Y) .

1(X1,Y) 1(X2,Y]X1)
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Data Processing Inequality

Data Processing Inequality. Let X, Y, Z be random quantities such that
X LZ|Y. Then, I(X,Y)>I(X,Z). And hence, H(X|Y) < H(X|Z).

Proof. We will apply the chain rule for Ml in two ways:

I(X,(Y,2)) = I(X,Z)+ I(X,Y|Z) = I(X,Y) + I(X, Z|Y).

Since X L Z | Y, we have I(X,Z|Y) =0. Also, I(X, Y|Z) > 0. Hence,

I(X,Y) > (X, 2).

For the conditional entropy statement, note that by property 4:
H(X) — H(X|Z) = I(X, Z) < I(X, Y) = H(X) — H(X|Y),

which implies H(X|Y) < H(X|Z).
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Ch 0.7: Convex Analysis

Definition (Convex set). A set Q C RY is called convex if, for every two points
w,w’ € Q and every a € [0,1], we have aw + (1 — a)w’ € Q.
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Convex functions

Definition (convex function)
- A function f : Q — R is convex if Q is a convex set and Vo € [0,1] and all u,v € Q

we have, f(au+ (1 — a)v) < af(u) + (1 — a)f(v).
- Equivalently, f is convex if, for all w € Q, there exists g € R" such that V' € Q, we
have f(w') > f(w) +g" (W — w).
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Subgradients and Subdifferentials

Convex function: A function f is convex if, for all w € Q, there exists g € R” such that
Vo' € Q, we have f(w') > f(w) + g (v —w).

Any g which satisfies the theorem above is called a subgradient of f at w.

The set of all subgradients of w are called the subdifferential, and denoted Of (w).
Some useful facts about subgradients: (Proofs: Try at home)
- If f is differentiable at w, then 0f (w) = {Vf(w)}.

-0 € 9f (w) <= w € argmin,,cq f(w).

- If g1 € 0fi(w) and g» € Ofy(w), then

agr+ g € d(af + ph) forall a, S € R
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Strong convexity

Convex function: A function f is convex if, for all w € Q, there exists g € R” such that
Vw' € Q, we have f(w') > f(w) + g (W —w).

Definition (strong convexity) A convex function f : Q — R is a—strongly convex in
some norm || - || if, f(w') > f(w)+g' (W —w)+ %[w —w|? Vg € If(w).

Remark. If f is strongly convex in || - ||2, this is equivalent to saying that f(w) — %|jw/|3
is convex, i.e f is at least as convex as a quadratic function.

Define h(w) = f(w) — §llw[3. Then, g € 0f(w) < g — aw € dh(w).
h(w') > h(w) + (g — aw) T (W' — w) <=
FW) = S B 2 F(w) = Sl + (g — aw) (' ~w) <=

F&) 2 Flw)+ g (@ —w)+ 5w — w5
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Strong convexity examples

Example 1. f(w) = 3|w|3 is 1-strongly convex in || - 2.
Proof. As ||w||3 — 3||lw|3 = 0 is convex.

Example 2. The negative entropy f(w) = Z,K:l w(i) log(w(i)) is 1-strongly-convex in
|- l1, when Q = A([K]) = {w € }Rﬁ; 17w =1}

Proof. As f is differentiable, 0f (w) = {Vf(w)}. Therefore, we need to show, for all
w,w’ € A([K]), we have

o) 2 Fw) + V)T (o )+ 5 '~ wl
= W) - fw) - Viw) (W —w)> %Hw/—wH%.

Note that OF ()
(i) =1+ log(w(i)).
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Strong convexity examples (cont'd)
We need to show, for all w,w’ € A([K]), we have

o)~ F(0) =~ V(@) (W~ ) > 3l ol

We just showed dmé ))) 1+ log(w(7)).

Therefore,

K

K K
LHS = Zw'(i) log(«'(1)) = D w(i) log(w(i)) — Y (1 + log(w(i)))(w'(i) — w(i))
i i=1

-y (543)

1
=KL, w) > Sl = wll,

The last step follows by Pinsker's, KL(P, Q) > 2TV(P, Q)% =2 (%HP — QH1)2.
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Some useful properties about strongly convex functions

1. If f1 is a-strongly convex and f, is convex then Bf; + f, is (Sa)—strongly convex.
Proof. Try at home

2. If w, = argmin, cq f(w), where f is a—strongly convex with respect to || - ||, then
flw) > fwe) + Zllw — wil?.

Proof. By definition of strong convexity,
F(@) 2 fw)+g (@ —w)+ Slw—wl?  forall g e of(w.).

Claim follows by noting 0 € Of (wy).
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Dual norm

Definition (dual norm) Given a norm || - ||, the dual norm || - ||, is defined as

wls = max u'w.
Jull<1

Examples of dual norm pairs: (|| - [l2, Il - 1I2), (|| - |1, | - |eo)-

For the 2-norm, .
lwlls = max v w= (“) w = [wl>.
llull<1 |wl]2

T

For the co-norm,

lwll« = max u w= lT\w] = [jwll1.

llulloo <1
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Dual norm (cont'd)

w|lx = max u'w.
[lufl<1

Hélder’s inequality For all a,b € R, we have a' b < ||a| - || b/

To=b" (2 ) lal
Il

<llal| max b'w
w,[lw]|<1

Proof.

= [lall - 116l

58/58



