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Introduction

Why study statistical lower bounds?

I Understand the fundamental difficulty of a learning (estimation) problem.

I Assess whether our learning algorithm is optimal or how far it is from the best
possible performance.

Expl: E.g. In HW0, the error for mean est is 1/n. But can you do better?

Plan of attack.

I Ch 1: Develop core techniques. Apply them to simple parameter estimation
problems.

I Ch 2–6: Apply these tools to classification, regression, density estimation, bandits,
online learning, online convex optimization:

1. Define the learning problem.

2. Design an algorithm and establish an upper bound on risk/regret.

3. Use techniques from this chapter to derive (matching) lower bounds.
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Ch 1.1: Lower bounds for point estimation

Point estimation. Estimate a single parameter θ(P) ∈ R of distribution P using data
(e.g the mean of a distribution).

A point estimation problem has the following components:

1. A known family of distributions P.

2. A dataset S of n points drawn i.i.d from an unknown distribution P ∈ P.

3. A parameter of interest θ = θ(P) ∈ R.

4. An estimator θ̂ = θ̂(S) ∈ R. An estimator is any function of the data.

5. A loss function ` : R× R→ R+ to evaluate how well we have estimated θ.

6. The risk R(P, θ̂) = ES∼Pn [`(θ(P), θ̂(S))].

Expl: Will assume i.i.d for now, but will relax in the future.
We will overload notation: a) Parameter as a scalar θ ∈ R or a function θ : P → R.
b) Estimate (a random variable) θ̂ ∈ R or an estimator (function) θ̂ : data → R.
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Example 1: Normal mean estimation
In the normal mean estimation example in HW0:
1. P = {N (µ, σ2);µ ∈ R}, where σ2 is known.

2. Data S = {X1, . . . ,Xn} where Xi ∼ P.

3. Parameter θ(P) = EX∼P [X ].

5. Loss function `(θ1, θ2) = (θ1 − θ2)2.

6. Risk R(θ, θ̂)
∆
= R(N (θ, σ2), θ̂) = EX n

1∼Pn [(θ(P)− θ̂(S))2].

4. In HW0, you saw two possible estimators:

(i) Sample mean: θ̂1(S) =
1

n

n∑
i=1

Xi , (ii) θ̂2(S) =
α

n

n∑
i=1

Xi .

And showed

R(θ, θ̂1) = EX n
1∼Pn [(θ(P)− θ̂1(S))2] =

σ2

n
, R(θ, θ̂2) = θ2(1− α)2 +

α2σ2

n
.
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Example 1: Normal mean estimation (cont’d)

θ̂1(S) =
1

n

n∑
i=1

Xi , R(θ, θ̂1) =
σ2

n
. θ̂2(S) =

α

n

n∑
i=1

Xi , R(θ, θ̂2) = θ2(1− α)2 +
α2σ2

n
.

The following figure illustrates both risks as a function of θ.

θ̂1 is better for some values of θ and θ̂2 is better for other values.

5/86



Example 1: Normal mean estimation (cont’d)

Question: Can you design an estimator θ̂ which minimizes R(θ, θ̂) for all θ?
That is, R(θ, θ̂) ≤ R(θ, θ̂′) for all θ̂′ and all θ ∈ R.
Ans: No. If we choose θ̂(S) = θ̃ for some θ̃ ∈ R, it will do well when P = N (θ̃, σ2).
No estimator can do better.
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Optimal estimators

Expl: We need something different than the strong ‘pointwise’ optimality.

As ‘pointwise’ optimality is too strong, we usually resort to one of two versions of
optimality.

1. Minimax optimality: θ̂ minimizes the maximum risk over a class of distributions
P, i.e supP∈P R(P, θ̂).

2. Average risk optimality: θ̂ minimizes the average risk over a distribution of
distributions Λ, i.e., EP∼Λ[R(P, θ̂)].
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Average (Bayesian) Risk Optimality

Average Risk. Introduce a probability Λ over P and define:

RΛ(θ̂)
∆
= EP∼Λ[R(P, θ̂)] = EP∼Λ

[
ES∼Pn

[
`(θ(P), θ̂(S))

∣∣P]]
- In the Bayesian paradigm, Λ is called the prior.

- θ(P) is treated as a random variable, since P ∼ Λ.

- An estimator θ̂Λ minimizing RΛ is the Bayes’ estimator.

- The minimum RΛ(θ̂Λ) is the Bayes’ risk.
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Finding the Bayes’ Estimator

How do we find θ̂Λ? Let us write,

RΛ(θ̂) = EP

[
ES

[
`(θ(P), θ̂(S))

∣∣P]] = ES

[
EP

[
`(θ(P), θ̂(S))

∣∣ S]︸ ︷︷ ︸
(∗)

]

If θ̂ minimizes (∗) = EP [`(θ(P), θ̂(S))|S ] for all S , then θ̂ is the Bayes’ estimator.

Expl: ES integrates over the data distribution:

P(S ∈ A) =
∫
PP(S ∈ A) dΛ(P).
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Bayes’ Estimator under Squared Loss

Lemma. If `(θ1, θ2) = (θ1 − θ2)2, then the Bayes’ estimator is the posterior mean,
i.e., EP [θ(P)|S ]. Moreover, the Bayes’ risk is ES [VarP [θ(P)|S ]].

Proof. Let θ̂(S) = EP [θ(P)|S ]. For any other estimator θ̂′:

EP [(θ̂′ − θ)2 |S ] = EP

[
(θ̂′ − θ̂ + θ̂ − θ)2

∣∣S]
= EP [(θ̂′ − θ̂)2 |S ] + EP [(θ̂ − θ)2 |S ] + 2(θ̂′ − θ̂)EP [θ̂ − θ |S ]

= EP [(θ̂′ − θ̂)2 |S ] + EP [(θ̂ − θ)2 |S ]

≥ EP [(θ̂ − θ)2 |S ].

Thus, θ̂(S) = E[θ|S ] minimizes the risk. The second statement follows from the
observation that E[θ|S ] = θ̂ and hence EP [(θ̂ − θ)2 | S ] is the posterior variance
VarP [θ|S ].

Expl: Recall overloading, θ(P) = θ, θ̂(S) = θ̂.
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Example: Normal–Normal Model in HW0

Setup. S = {X1, . . . ,Xn}
i.i.d.∼ N (µ, σ2), σ2 known. µ ∼ Λ = N (ν, τ2).

Posterior. You will show, θ|S ∼ N (ν̃, τ̃2), where

ν̃ =
σ2/n

τ2 + σ2/n
ν +

τ2

τ2 + σ2/n

(
1

n

n∑
i=1

Xi

)
, τ̃2 =

(
1

τ2
+

1

σ2/n

)−1

.

Bayes’ Estimator and Bayes’ Risk.

θ̂Λ(S) = ν̃, RΛ(θ̂Λ) = ES [τ̃2] = τ̃2 =

(
1

τ2
+

1

σ2/n

)−1

.
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Example: Bernoulli-Beta Model in Ch0

Setup. S = {X1, . . . ,Xn}
i.i.d.∼ Bern (µ). µ ∼ Λ = Beta(a, b).

Posterior.

θ|S ∼ Beta(X + a, n − X + b), X =
n∑

i=1

Xi .

Bayes’ Estimator.

θ̂Λ(S) = E[θ|S ] =
X + a

n + a + b
.

Bayes’ Risk.

RΛ(θ̂Λ) = Eµ
[
EX∼Binomial(n,µ)

[( X + a

n + a + b
− θ
)2
]]

12/86



Minimax Optimality

Goal. We wish to find an estimator that minimizes the maximum risk over a class of
distributions P:

sup
P∈P

R(P, θ̂).

Minimax Risk.

R? = inf
θ̂

sup
P∈P

R(P, θ̂) = inf
θ̂

sup
P∈P

ES∼Pn

[
`(θ(P), θ̂(S))

]
.

- R? depends on P, `, n, . . . .

- Sometimes we write R?n(P, `) to make this dependence explicit.

- An estimator θ̂ achieving R? = inf
θ̂

supP∈P R(P, θ̂) is called a minimax estimator.
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Computing the Minimax Risk

Classical Approach: Find least favorable priors and corresponding Bayes’ estimators
with constant frequentist risk. Expl: Write UB and LB before pause.

Our Recipe. We will instead use the following approach:

1. Upper bound: Design a “good” estimator θ̂ and upper bound its risk:

R?n ≤ sup
P∈P

R(P, θ̂) ≤ Un.

2. Lower bound: Choose a prior Λ with supp (Λ) ⊆ P and lower bound the Bayes’
risk by Ln. Therefore we have,

R?n = inf
θ̂

sup
P∈P

R(P, θ̂) ≥︸︷︷︸
max≥avg

inf
θ̂
EP∼Λ[R(P, θ̂)] =︸︷︷︸

Bayes’ estimator

EP∼Λ[R(P, θ̂Λ)] ≥ Ln.

3. If Un = Ln, we have the exact minimax risk, and θ̂ is minimax optimal.

4. If Un ∈ O(Ln), we have the minimax rate, and θ̂ is rate-optimal.
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Example 1: Gaussian Mean Estimation

Setup. P = {N (µ, σ2) : µ ∈ R}, with known σ2. Let S = {X1, . . . ,Xn} be i.i.d.

Claim. The sample mean µ̂(S) = 1
n

∑n
i=1 Xi is minimax optimal for squared loss.

Upper Bound. From HW0, you know

sup
P∈P

R(µ, µ̂) = sup
µ∈R

ES∼N (µ,σ2)[(µ− µ̂(S))2] = sup
µ∈R

σ2

n
=
σ2

n
.

Thus, R? ≤ σ2/n.
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Example 1: Gaussian Mean Estimation (cont’d)

Recall, for the normal-normal model, the Bayes’ risk is

RΛ(θ̂Λ) = ES [τ̃ 2] = τ̃ 2 =

(
1

τ 2
+

1

σ2/n

)−1

.

Lower Bound. Take prior Λ = N (0, τ2). From previous example, we have,

R? ≥ Ln =
1

1
τ2 + 1

σ2/n

.

Taking supτ gives R? ≥ σ2/n.

Therefore, the sample mean is (exactly) minimax-optimal.
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Example 2: Bernoulli Mean Estimation

Setup. P = {Bern (µ) : µ ∈ [0, 1]}. S = {X1, . . . ,Xn} i.i.d. from P ∈ P.

Upper Bound. We will use the sample mean µ̂(S) = 1
n

∑n
i=1 Xi . Then,

sup
P∈P

R(µ, µ̂) = sup
µ∈[0,1]

ES∼Bern (µ)[(µ− µ̂(S))2]

= sup
µ

Varµ(X )

n
= sup

µ

µ(1− µ)

n

=
1

4n
∆
= Un.

Thus, R? ≤ 1/(4n).

17/86



Example 2: Bernoulli Mean Estimation (cont’d)

Lower Bound. Use Λ = Beta (a, b). Then you can show (Try at home)

Ln = RΛ(θ̂Λ) = Eµ[µ2]((a + b)2 − n) + Eµ[µ](n − 2a(a + b)) + a2.

Choosing a = b =
√
n/2 gives:

Ln =
1

4(
√
n + 1)2

=
1

4n + 8
√
n + 4

.

Clearly, Un > Ln, but Un, Ln ∈ Θ(1/n). Hence, 1/n is the minimax rate.

An exactly minimax-optimal estimator is:

θ̂(S) =

√
n

1 +
√
n
· 1

n

n∑
i=1

Xi +
1

2(1 +
√
n)
.
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Takeaways and Next Steps

Limitations of this approach. Need to design a prior and compute posterior. This is
not easy for complex distributions.
E.g: Nonparametric regression: all Lipschitz functions in [0, 1]d .

Next. We will move to lower bounds beyond point estimation using hypothesis
testing. This approach is more general.

Lessons Going Forward.

I Maximum risk ≥ average risk (key idea for lower bounds).

I Choose good priors, possibly depending on n.

I Still need to design good estimators.

Expl: This method has limited applicability, so we won’t focus much on this

approach going forward, instead using tools from hypothesis testing, which

are more general purpose. But I don’t want you to think of this as being

fundamentally different from what we are going to study.
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Ch 1.2: Lower bounds for hypothesis testing

Plan for the remainder of the chapter.

I Lower bounds for hypothesis testing

1. Le Cam’s method for binary hypothesis tests

2. Fano’s method for multiple tests

I Reduction from learning (estimation) to testing

Expl: The way we are going to prove lower bounds for these general

estimation problems, is by reducing it to testing problems.
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Hypothesis test

Hypothesis test. Let P be a class of distributions and let P1, . . . ,PN be a partition
of P. Let S be a dataset drawn from some P ∈ P. A (multiple) hypothesis test ψ is a
function of the data which maps to [N] = {1, . . . ,N}. If ψ(S) = j , then the test has
decided that P ∈ Pj .

In this class, we will focus on cases where Pj = {Pj} is a singleton for all j .

Let Pj(ψ 6= j) = PS∼Pj
(ψ(S) 6= j) is the probability that ψ does not correctly identify j

when the data comes from Pj .
- As before, we will overload notation, and view ψ as both a function and a RV.

Lower bound. We wish to show that no test can simultaneously do well on all
alternatives. Equivalently, any test will do poorly on at least one alternative:

inf
ψ

max
j∈[N]

Pj(ψ(S) 6= j) ≥ Something large.

Expl: We will first look at binary hypothesis tests.
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Ch 1.2.1: Le Cam’s method for binary hypothesis tests

Binary hypothesis test. A hypothesis test with just two alternatives P0,P1.

Neyman-Pearson test. Let data S come from either distribution P0 or P1, with
densities p0, p1 respectively. The Neyman-Pearson test is a binary hypothesis test
which chooses,

ψNP(S) =

{
0 if p0(S) ≥ p1(S),

1 if p0(S) < p1(S).

N.B. : When the dataset is an i.i.d sample, we should view p0, p1 as the product
density.
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Neyman Pearson Test (cont’d)

Theorem. The sum of errors is minimized by the Neyman-Pearson test. That is, for
any other test ψ,

P0(ψ 6= 0) + P1(ψ 6= 1) ≥ P0(ψNP 6= 0) + P1(ψNP 6= 1).

Expl: Recall overloadinng: P0(ψ 6= 0) = PS∼P0 (ψ(S) 6= 0) as the probability

that ψ gets it wrong when data is sampled from P0.Proof. Write the LHS as,

P0(ψ = 1) + P1(ψ = 0) =

∫
ψ=1

p0(x)dx +

∫
ψ=0

p1(x)dx

=

∫
ψ=1,ψNP=1

p0 +

∫
ψ=1,ψNP=0

p0 +

∫
ψ=0,ψNP=1

p1 +

∫
ψ=0,ψNP=0

p1

≥
∫
ψ=1,ψNP=1

p0 +

∫
ψ=1,ψNP=0

p1 +

∫
ψ=0,ψNP=1

p0 +

∫
ψ=0,ψNP=0

p1

=

∫
ψNP=1

p0 +

∫
ψNP=0

p1 = P0(ψNP = 1) + P1(ψNP = 0)
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Neyman Pearson Test (cont’d) Expl: Write out theorem before pause.

Corollary (Bretagnolle-Huber inequality). For any binary hypothesis test ψ,

P0(ψ 6= 0) + P1(ψ 6= 1) ≥ ‖P0 ∧ P1‖ = 1− TV(P0,P1) ≥ 1

2
e−KL(P0,P1).

Recall from Ch0:

TV(P,Q) =
1

2
‖P − Q‖1 = 1− ‖P ∧ Q‖, ‖P ∧ Q‖ ≥ 1

2
e−KL(P,Q).

Proof. The first inequality follows from the NP test, and the observation,

P0(ψNP = 1) + P1(ψNP = 0) =

∫
p0<p1

p0 +

∫
p1<p0

p1 =

∫
min(p0, p1) = ‖P0 ∧ P1‖.

The remaining claims follow from the relations we proved about divergences.

Expl: The KL version is easiest to apply. We will use BH inequality to

develop LeCam’s method, but we will also see this later when we discuss

lower bounds for bandits.
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Le Cam’s method

LeCam’s method: LeCam’s method for binary hypothesis testing simply combines
“max ≥ avg” with the BH inequality. We can summarize it as follows:

inf
ψ

max
j∈{0,1}

Pj(ψ(S) 6= j) ≥ 1

2
inf
ψ

(
P0(ψ(S) 6= 0) + P1(ψ(S) 6= 1)

)
max ≥ avg

≥ 1

2
(P0(ψNP(S) 6= 0) + P1(ψNP(S) 6= 1) NP test

=
1

2
‖P0 ∧ P1‖

≥ 1

4
e−KL(P0,P1). Affinity-KL bound

N.B. The KL version is the easiest to apply but you can also use TV/L1 or
Chi-squared.
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Example: normal vs normal

Suppose a dataset was drawn from N (µ, σ2) where σ2 is known and µ ∈ {0,∆},
where ∆ > 0. Consider the following hypothesis test1,

Choose ψ(S) = 0 if
1

n

n∑
i=1

Xi ≤
∆

2
, else choose ψ(S) = ∆.

In HW0, you showed that with O
(
σ2∆−2 log(1/δ)

)
samples, this test can achieve

P0(ψ(S) = 0) ≥ 1− δ, P∆(ψ(S) = ∆) ≥ 1− δ. (1)

We will now show that Ω
(
σ2∆−2 log(1/δ)

)
samples are also necessary for any test

that achieves (1).

1Try at home: Show that this is in fact the Neyman-Pearson test. 26/86



Example: normal vs normal (cont’d)

Recall:
KL(N (µ1, σ

2),N (µ2, σ
2)) =

(µ1 − µ2)2

2σ2
, KL(Pn,Qn) = nKL(P,Q),

Le Cam’s method: inf
ψ

max
j∈[0,1]

Pj(ψ(S) 6= j) ≥ 1

4
e−KL(P0,P1).

Let ψ be such that, with n samples we have P0(ψ(S) = 0) ≥ 1− δ, and
P∆(ψ(S) = ∆) ≥ 1− δ. That is, maxµ∈{0,∆} Pµ(ψ 6= µ) ≤ δ.
Hence, by Le Cam’s method:

δ ≥ max
µ∈{0,∆}

Pµ(ψ 6= µ) ≥ inf
ψ′

max
µ∈{0,∆}

Pµ(ψ′ 6= µ)

≥ 1

4
exp

(
−KL

(
N (0, σ2)n,N (∆, σ2)n

))
Le Cam’s

=
1

4
exp

(
−n · ∆2

2σ2

)
KL properties

Hence, n ≥ 2σ2

∆2 log(1/(4δ)).
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Ch 1.2.2: Fano’s method for multiple hypothesis tests

Multiple hypothesis test. A hypothesis test with more than two alternatives P0,P1.

Goal. Show,
inf
ψ

max
j∈[N]

Pj(ψ(S) 6= j) ≥ Something large.

and this lower bound should grow with N.
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Data Processing Inequality

Theorem. Let X ,Y ,Z be random variables such that X ⊥ Z |Y . Then,

I (X ,Y ) ≥ I (X ,Z ) and hence H(X |Y ) ≤ H(X |Z ).

Think of X ,Y ,Z as forming the Markov chain: X → Y → Z .

Intuition and Connections to Hypothesis Testing.

I We assume a prior over {P1, . . . ,PN}. Let X ∈ [N] be the random variable
selecting one.

I Data Y is generated from PX .

I A test Z estimates X from Y .

I I (X ,Z ) ≤ I (X ,Y ) says the test contains no more information about X than Y ,
i.e., you cannot magically learn more about X by processing information in Y .

I Similarly, H(X |Y ) ≤ H(X |Z ) says knowing the data Y reduces uncertainty about
X at least as much as knowing only the outcome of the test Z .
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Fano’s Inequality

Fano’s inequality. Let X be a discrete random variable with support X . Let
X → Y → X̂ form a Markov chain. Define:

pe
∆
= P(X̂ 6= X ), h(pe)

∆
= −pe log(pe)− (1− pe) log(1− pe).

Then,

H(X |Y )
(∗∗)
≤ H(X |X̂ )

(∗)
≤ pe log(|X | − 1) + h(pe).

Hence,

P(X̂ 6= X ) ≥ H(X |Y )− log(2)

log(|X |)
.

Connection to Hypothesis Testing.

I X ∈ [1, . . . ,N] is a RV, Y is the data, X̂ is the test to identify X from Y .

I pe = P(X̂ 6= X ) is the probability of error.

I Fano’s inequality quantifies the relationship between pe and H(X |Y ).
e.g., If Y uniquely identifies X , then H(X |Y ) = 0 and the lower bound is vacuous.
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Proof of Fano’s Inequality
Proof. Let E = 1(X̂ 6= X ).
Use the chain rule for entropy in two ways:

H(E ,X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ ) = H(E |X̂ ) + H(X |E , X̂ ).

Now note:

- H(E |X , X̂ ) = 0 since X , X̂ determine E .

- H(E |X̂ ) ≤ H(E ) = h(pe) since conditioning reduces entropy.

- Next:
H(X |E , X̂ ) = P(E = 0)H(X |X̂ ,E = 0) + P(E = 1)H(X |X̂ ,E = 1)

= (1− pe) · 0 + pe · H(X |X̂ ,E = 1)

≤ pe log(|X | − 1).

Here, we used (a) if E = 0, then X = X̂ , so H(X |X̂ ,E = 0) = 0, and (b) if E = 1,
there are at most |X | − 1 possible outcomes.
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Proof of Fano’s Inequality (cont’d)

Combining results:
H(X |X̂ ) ≤ h(pe) + pe log(|X | − 1),

which is inequality (∗).

From the conditional entropy version of the data processing inequality:

H(X |Y ) ≤ H(X |X̂ ),

which is (∗∗).

Finally, since h(pe) = H(E ) ≤ log(2), we get:

pe ≥
H(X |Y )− log(2)

log(|X |)
.
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Fano’s Method

Theorem (Fano’s Method). Let S be drawn from some P ∈ {P1, . . . ,PN} ⊂ P and
let ψ denote tests which map S to [N]. Then, the following statements hold:

1. Global Fano method: Denote P = 1
N

∑N
i=1 Pi . Then,

inf
ψ

max
j∈[N]

Pj(ψ(S) 6= j) ≥

(
1−

1
N

∑N
j=1 KL(Pj ,P) + log(2)

log(N)

)
.

2. Local Fano method:

inf
ψ

max
j∈[N]

Pj(ψ(S) 6= j) ≥

(
1−

1
N2

∑N
j=1

∑N
k=1 KL(Pj ,Pk) + log(2)

log(N)

)
.

Global Fano is tighter, but harder to apply since computing KL(Pj ,P) can be difficult.
Local Fano is looser but easier to apply since it only requires pairwise KL divergences.
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Proof of Fano’s Method

Setup. Define the following data-generating process:

I Define a uniform prior over {P1, . . . ,PN}: P(V = j) = 1/N.

I Given V = j , sample S from Pj .

The marginal distribution of S is P, where for any set A,

P(S ∈ A) =
N∑
j=1

P(S ∈ A|V = j)P(V = j) =
1

N

N∑
j=1

Pj(A) = P(A).

As max ≥ avg, and V induces a uniform prior on [N], we have

inf
ψ

max
j∈[N]

Pj(ψ(S) 6= j) ≥ inf
ψ
PV ,S(ψ(S) 6= V ).
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Proof of Fano’s Method (cont’d)
Fano’s inequality: For X → Y → X̂ , P(X̂ 6= X ) ≥ H(X |Y )−log(2)

log(|X |) .

We want to show,

max
j∈[N]

Pj(ψ(S) 6= j) ≥

(
1−

1
N

∑N
j=1 KL(Pj ,P) + log(2)

log(N)

)
≥

(
1−

1
N2

∑N
j,k=1 KL(Pj ,Pk) + log(2)

log(N)

)
.

By Fano’s inequality, for any test ψ:

PV ,S(ψ(S) 6= V ) ≥ H(V |S)− log(2)

log(N)
Fano’s inequality

=
H(V )− I (V ,S)− log(2)

log(N)
Using I (X ,Y ) = H(X )− H(X |Y )

= 1− I (V ,S) + log(2)

log(N)
. As H(V ) = log(N)

This gives:
max
j∈[N]

Pj(ψ(S) 6= j) ≥
(

1− I (V ,S) + log(2)

log(N)

)
. (2)
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Proof of Fano’s Method (cont.)

Bounding Mutual Information. Let pj be the density of Pj , p be the density of P, and
p be the density of the joint distribution P of (V ,S). We expand I (S ,V ) as follows:

I (S ,V ) = ES ,V

[
log

(
p(S ,V )

p(S)p(V )

)]
=

N∑
j=1

∫
s
p(S = s|V = j)︸ ︷︷ ︸

pj (S)

P(V = j)︸ ︷︷ ︸
1/N

log

(
pj(S) · 1

N

p(S) · 1
N

)
ds

=
N∑
j=1

∫
s
pj(s) log

(
pj(s)

p(s)

)
ds

=
1

N

N∑
j=1

KL(Pj ,P)
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Proof of Fano’s Method (cont.)

Jensen’s inequality. For convex f , f
(
E[X ]

)
≤ E

[
f (X )

]
.

By Jensen’s inequality, and convexity of KL in the second argument, we have

KL
(
Pj ,P

)
= ES∼Pj

[
log

(
pj(S)

1
N

∑N
i=1 pi (S)

)]

≤ ES∼Pj

[
1

N

N∑
i=1

log

(
pj(S)

pi (S)

)]
=

1

N

N∑
i=1

KL(Pj ,Pi ).

Therefore,

I (S ,V ) =
1

N

N∑
j=1

KL(Pj ,P) ≤ 1

N2

N∑
j=1

N∑
k=1

KL(Pj ,Pk)
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Proof of Fano’s Method (cont’d)

We have shown,

max
j∈[N]

Pj(ψ(S) 6= j) ≥
(

1− I (V ,S) + log(2)

log(N)

)
.

I (S ,V )
(a)
=

1

N

N∑
j=1

KL(Pj ,P)
(b)

≤ 1

N2

N∑
j=1

N∑
k=1

KL(Pj ,Pk)

Putting it altogether we get,

max
j∈[N]

Pj(ψ(S) 6= j) ≥

(
1−

1
N

∑N
j=1 KL(Pj ,P) + log(2)

log(N)

)
By (a) → Global Fano

≥

(
1−

1
N2

∑N
j ,k=1 KL(Pj ,Pk) + log(2)

log(N)

)
. By (b) → Local Fano
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Reduction from Learning to Testing

Estimation (learning) is a generalization of hypothesis testing.

A typical estimation (learning) problem. Given a class of distributions P, data S is
drawn from some P ∈ P, identify2 the distribution P.

A typical hypothesis testing problem. Data S is drawn from some
P ∈ {P1, . . . ,PN} ⊂ P. Identify the distribution P.

Hence, testing is easier than learning. From any learning algorithm, we can device a
testing procedure as follows:
- Let P̂ be the distribution chosen by a learning algorithm.
- Choose the element in {P1, . . . ,PN} that is “closest” to P̂.

Therefore a lower bound for testing =⇒ a lower bound for learning.
- If we carefully design alternatives {P1, . . . ,PN}, we can in fact get tight lower bounds.

2Usually we may only be interested in learning a parameter of interest θ(P) instead of the entire
distribution, but we will ignore this distinction for now. 39/86



A learning problem

- Let P be a known family of distributions.

- We observe data S drawn some unknown distribution P ∈ P.

- An algorithm Â maps the data to an action space A. Letting D denoting the data
space, we can write Â : D → A.

- The learner incurs a loss L(A,P) for choosing action A when the distribution is P,
where L : A×P → R+.

- We will assume, for all P ∈ P, we have infA L(A,P) = 0. This is often w.l.o.g as we

can always redefine, LA(A,P)
∆
= L(A,P)− infA′∈A L(A′,P).

- Define the risk of an algorithm as, R(Â,P) = ES∼P

[
L(Â(S),P)

]
.

- The minimax risk: R?(P) = inf
Â

supP∈P R(Â,P).

If P is clear from context, we will simply write R?.

If there are n i.i.d data, we will write R?n to emphasize this.
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Example 1: Normal mean estimation

- Let P = {N (θ, σ2); θ ∈ R} where σ2 is known a priori.

- We observe an i.i.d datset S = {X1, . . . ,Xn} from some unknown N (θ, σ2).
Hence, dataspace D = Rn.

- We wish to estimate the mean, so the action space is R.

- An (algorithm) estimator µ̂ : Rn → R.

- The loss, L(µ′,N (θ, σ2)) = (µ′ − θ)2. We have infµ′∈R L(µ′,N (θ, σ2)) = 0 for all
θ ∈ R.

- Risk, R(µ̂,N (θ, σ2)) = ES∼N (θ,σ2)n
[
(µ̂(S)− θ)2

]
.

- Minimax risk
R?n = inf

µ̂
sup
θ∈R

ES∼N (θ,σ2)n
[
(µ̂(S)− θ)2

]
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Example 2: Mean estimation (more generally)

- Let P be a family of distributions such that supp (P) ⊂ Rd for all P ∈ P.

- We observe an i.i.d datset S = {X1, . . . ,Xn} from some P ∈ P.

- The action space is Rd .

- An (algorithm) estimator µ̂ : (Rd)n → Rd .

- The loss, L(µ′,P) = ‖µ′ − µ(P)‖pp, where p ≥ 1 and µ(P) = EX∼P [X ].
We have infµ′∈Rd L(µ′,P) = 0.

- Risk, R(µ̂,P) = ES∼Pn

[
‖µ̂(S)− µ(P)‖pp

]
.

- Minimax risk
R?n = inf

µ̂
sup
P∈P

ES∼Pn

[
‖µ̂(S)− µ(P)‖pp

]
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Example 3: Regression in L2 norm

- Let X be an input space.

- Let P be a family of distributions with supp (P) ⊂ X × R for all P ∈ P.

- We observe an i.i.d datset S = {(X1,Y1), . . . , (Xn,Yn)} from some P ∈ P.

- An algorithm will, based on the data, produce a function to predict Y from X .
Hence, the action space is RX = {g : X → R}.
- An (algorithm) estimator f̂ : (X × R)n → RX .

- The loss, L(f ′,P) = ‖f ′ − f (P)‖2
2, where f (P) is the regression function, i.e.,

f (P)(·) = EP [Y |X = ·]. Here, ‖f ′ − f (P)‖2
2 =

∫
X (f ′(x)− f (P)(x))2dx .

We have inff ′∈RX L(f ′,P) = 0.

- Risk, R(f̂ ,P) = ES∼Pn

[
‖f̂ (S)− f (P)‖2

2

]
.

- Minimax risk
R?n = inf

µ̂
sup
P∈P

ES∼Pn

[
‖f̂ (S)− f (P)‖2

2

]
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Learning algorithms (cont’d)

The previous examples are instances of parameter estimation.
- You are estimating a parameter (property) θ of the distribution.
- E.g mean in Examples 1 and 2, regression function in Example 3.

Learning problems are not always formulated in this form.
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Example 4: Regression, excess risk in a hypothesis class

- Let X be an input space. Let P be a family of distributions with supp (P) ⊂ X × R
for all P ∈ P.

- We observe an i.i.d datset S = {(X1,Y1), . . . , (Xn,Yn)} from some P ∈ P.

- Let H ⊂ RX be a hypothesis space.
- An algorithm ĥ will, based on the data, choose some h ∈ H as the predictor.
That is, the action space is H and ĥ : (X × R)n → H.

- Define the instance loss as `(h, (X ,Y )) = (h(X )− Y )2.

- The population loss is L(h,P) = EX ,Y∼P [`(h, (X ,Y ))] = EX ,Y∼P [(h(X )− Y )2].
Here, we do not have infh∈H L(h,P) = 0.
Therefore, define the excess population loss LH(h,P) = L(h,P)− infh′∈H L(h′,P)

- Define the excess risk,

R(ĥ,P) = ES∼Pn

[
LH(ĥ(S),P)

]
= ES∼Pn

[
L(ĥ(S),P)

]
− infh′∈H L(h′,P).

- The minimax risk R?n = inf
ĥ

supP∈P R(ĥ,P).
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Example 5: Classification, excess risk in a hypothesis class

- Let X be an input space. Let P be a family of distributions with
supp (P) ⊂ X × {0, 1} for all P ∈ P.

- We observe an i.i.d datset S = {(X1,Y1), . . . , (Xn,Yn)} from some P ∈ P.

- Let H ⊂ {0, 1}X be a hypothesis space.
- An algorithm ĥ will, based on the data, choose some h ∈ H as the predictor.

- Define the instance loss as `(h, (X ,Y )) = 1(h(X ) 6= Y ).

- The population loss is L(h,P) = EX ,Y∼P [`(h, (X ,Y ))] = PX ,Y∼P(h(X ) 6= Y ).
Define the excess population loss LH(h,P) = L(h,P)− infh′∈H L(h′,P)

- Define the excess risk and minimax risk similar to Example 4.

Expl: The terms loss/risk/error are construed differently.

In this class, generally risk will refer to when we take an expectation over the

training data.
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Reduction to testing

Separation between distributions. In a given learning problem with loss L and action
space A, we define the separation ∆(P,Q) between two distributions P,Q as follows:

∆(P,Q) = sup
{
δ ≥ 0; L(A,P) ≤ δ =⇒ L(A,Q) ≥ δ, ∀A ∈ A,

L(A,Q) ≤ δ =⇒ L(A,P) ≥ δ, ∀A ∈ A,
}

A set of distributions {P1, . . . ,PN} are δ-separated if ∆(Pj ,Pk) ≥ δ for all j 6= k.

Expl: That is, no hypothesis can do well on both.

(A hypothesis could do poorly on both.)
Theorem (Reduction to testing). Let S be drawn from some distribution P ∈ P.
Let {P1, . . . ,PN} be a δ-separated subset of P. Let ψ be any test which maps the
dataset to [N]. Then,

R?(P) ≥ δ · inf
ψ

max
j∈[N]

PS∼Pj
(ψ(S) 6= j).

Expl: This is a key result, so let us pause here for a moment. Explain

intuition from next slide. 47/86



Reduction to testing (cont’d)

This theorem gives a lower bound on the minimax risk.

I Intuition: if you cannot distinguish between N alternatives, then your estimation
error also has to be large.

I We can leverage tools for proving lower bounds for hypothesis testing to now
prove lower bounds for estimation.

How tight a lower bound we get depends on how well we choose our alternatives:

I If N is too large, then δ may be small and the lower bound will be small.

I If N is too small, then δ may be large, but the probability of making a mistake
PS∼Pj

(ψ(S) 6= j) will be small.
Expl: Draw picture here.
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Proof of RTT Theorem

Proof of RTT theorem. For brevity, denote Pj(·) = PS∼Pj
(·), and Ej [·] = ES∼Pj

[·].
As L(A,P) is non-negative, we can lower bound R? using Markov’s inequality:

R? = inf
Â

sup
P∈P

EP

[
L(Â(S),P)

]
≥ inf

Â
max
j∈[N]

Ej

[
L(Â(S),Pj)

]
≥ δ · inf

Â
max
j∈[N]

Pj(L(Â(S),Pj) ≥ δ) Markov’s, P(Z > a) ≤ E[Z ]

a
if Z ≥ 0

Claim: Let ψ
Â

be the test, where ψ
Â

(S) = argminj∈[N] L(Â(S),Pj). Suppose S ∼ Pj .

If ψ
Â

(S) 6= j , then, L(Â(S),Pj) ≥ δ.

Then, by this claim we have,

R? ≥ δ · inf
Â

max
j∈[N]

Pj(L(Â(S),Pj) ≥ δ) ≥ δ · inf
Â

max
j∈[N]

Pj(ψÂ
(S) 6= j)

≥ δ · inf
ψ

max
j∈[N]

Pj(ψ(S) 6= j)
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Proof of RTT Theorem (cont’d)

Recall:
∆(P,Q) = sup

{
δ ≥ 0; L(A,P) ≤ δ =⇒ L(A,Q) ≥ δ, ∀A ∈ A,

L(A,Q) ≤ δ =⇒ L(A,P) ≥ δ, ∀A ∈ A,
}

We will now prove the claim.

Claim: Let ψÂ be the test, where ψÂ(S) = argminj∈[N] L(Â(S),Pj). Suppose S ∼ Pj . If

ψÂ(S) 6= j , then, L(Â(S),Pj) ≥ δ.

Proof. Let ψ
Â

(S) = k 6= j . First suppose, L(Â(S),Pk) ≤ δ. Then, L(Â(S),Pj) ≥ δ by
the definition of δ-separation.

If L(Â(S),Pk) ≥ δ, then as k = ψ
Â

(S) has the smallest loss among all alternatives, we

have L(Â(S),Pj) ≥ L(Â(S),Pk) ≥ δ.
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Le Cam’s method for learning from i.i.d data

Le Cam’s method. Let S be an i.i.d dataset of n points drawn from some P ∈ P. Let
{P0,P1} ⊂ P such that ∆(P0,P1) ≥ δ and KL(P0,P1) ≤ log(2)/n. Then, R?n ≥ δ

8 .

Intuition. For tight lower bounds, we should choose P0,P1 to be well-separated in the
loss (large ∆(P0,P1)). But, they should be statistically indistinguishable (small KL).

Recall, Le Cam’s method: inf
ψ

max
j∈[0,1]

Pj(ψ(S) 6= j) ≥ 1

4
e−KL(P0,P1).

Proof.As the data is i.i.d, using the properties of KL, we have

e−KL(Pn
0 ,P

n
1 ) = e−nKL(P0,P1) ≥ 1

2
.

Therefore, by RTT

R?n ≥ δ · inf
ψ

max
j∈{0,1}

Pj(ψ(S) 6= j) ≥ δ

8
.
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Fano’s method for learning from i.i.d data

Local Fano method. Let S be an i.i.d dataset from some distribution P ∈ P. Let
{P1, . . . ,PN} ⊂ P such that ∆(Pj ,Pk) ≥ δ and KL(Pj ,Pk) ≤ log(N)

4n for all j 6= k .

Suppose N ≥ 16. Then, R?n ≥ δ
2 .

Recall, Local Fano method: inf
ψ

max
j∈[N]

Pj(ψ(S) 6= j) ≥

(
1−

1
N2

∑N
j,k=1 KL(Pj ,Pk) + log(2)

log(N)

)
.

Proof. First note that by the KL property for i.i.d data and the given condition,
KL(Pn

j ,P
n
k ) = nKL(Pj ,Pk) ≤ log(N)

4 . Therefore,

R? ≥ δ · inf
ψ

max
j∈[N]

PS∼Pj
(ψ(S) 6= j) ≥ δ ·

(
1−

1
N2

∑
j ,k log(N)/4 + log(2)

log(N)

)
(a)

≥ δ ·
(

1− 1

4
− log(2)

log(16)

)
=
δ

2
.

Here, (a) uses the fact that N ≥ 16.
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A Corollary of RTT for parameter estimation problems

Let Θ be a parameter space, and θ(P) be a parameter of the distribution, i.e.,
θ : P → Θ. Suppose the action space is A = Θ, and the loss takes the form,

L(θ′,P) = Φ ◦ ρ(θ′, θ(P)), ∀ θ′ ∈ Θ.

Here, ρ : Θ×Θ→ R+ is a pseudo-metric and Φ : R+ → R+ is a non-decreasing
function.

E.g.: In Example 1: Φ(t) = t2, ρ(θ1, θ2) = |θ1 − θ2|. In Example 2: Φ(t) = tp,

ρ(θ1, θ2) = ‖θ1 − θ2‖p. In Example 3: Φ(t) = t2, ρ(f1, f2) = ‖f1 − f2‖2.

Corollary of RTT for parameter estimation. Let {P1, . . . ,PN} ⊂ P and let
δ = minj 6=k ρ(θ(Pj), θ(Pk)). Let θ̂ denote an estimator for θ. Then,

R? = inf
θ̂

sup
P∈P

ES∼P

[
Φ ◦ ρ(θ̂(S), θ(P))

]
≥ Φ

(
δ

2

)
inf
ψ

max
j∈[N]

PS∼Pj
(ψ(S) 6= j) .
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Proof of corollary

Recall: ∆(P,Q) = sup
{
δ′ ≥ 0; L(A,P) ≤ δ′ =⇒ L(A,Q) ≥ δ′, ∀A ∈ A,

L(A,Q) ≤ δ′ =⇒ L(A,P) ≥ δ′, ∀A ∈ A,
}

RTT: If ∆(Pj ,Pk) ≥ δ′ for all P1, . . . ,PN , then R? ≥ δ′ infψ maxj Pj (ψ(S) 6= j).

Proof. For simplicity, we will prove the corollary for strictly increasing Φ. Suppose
L(θ′,Pj) = Φ ◦ ρ(θ′, θ(Pj)) ≤ Φ(δ/2) for some θ′ ∈ Θ. It is sufficient to show that
P1, . . . ,PN are Φ(δ/2)-separated in the loss L. We have,

ρ(θ′, θ(Pj)) ≤ δ

2

=⇒ ρ(θ′, θ(Pk)) ≥ δ

2
for all k 6= j As {θ(Pi )}i∈[N] is a δ-packing of Θ

=⇒ L(θ′,Pk) = Φ ◦ ρ(θ′, θ(Pk)) ≥ Φ

(
δ

2

)
.

Therefore, the distributions P1, . . . ,PN are Φ(δ/2)-separated in the loss L.
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Le Cam and Fano methods for parameter estimation

Le Cam’s method for parameter estimation. Let S be an i.i.d dataset of n points
drawn from some P ∈ P. Let P0,P1 ∈ P. Let ρ(θ(P0), θ(P1)) ≥ δ. If
KL(P0,P1) ≤ 1

n log(2), then

R?n(P) ≥ 1

8
Φ

(
δ

2

)
.

Local Fano method for parameter estimation. Let S be an i.i.d dataset from some
distribution P ∈ P. Let {P1, . . . ,PN} ⊂ P such that N ≥ 16, ρ(θ(Pj), θ(Pk)) ≥ δ,
and KL(Pj ,Pk) ≤ log(N)/4n for all j 6= k . Then,

R?n ≥
1

2
Φ

(
δ

2

)
.

(You can verify these statements at home.)

Expl: We want our construction to be well-separated, i.e ρ(θ(P0), θ(P1)) to

be large. But, they should be statistically indistinguishable (i.e close in KL).

This is the key challenge in proving lower bounds. 55/86



Example 1: Normal mean estimation
Let S = {X1, . . . ,Xn} be drawn i.i.d from some P ∈ P, where
P = {N (µ, s2);µ ∈ R, s2 ≤ σ2} with σ2 known. We wish to estimate the mean
θ(P) = EX∼P [X ]. Let the loss be Φ ◦ ρ(θ1, θ2) = (θ1 − θ2)2.

First, we will choose P0 = N (0, σ2) and P1 = N (δ, σ2).
We have separation ρ(θ(P0), θ(P1)) = |θ(P0)− θ(P1)| = δ.

We also have, KL(P0,P1) = δ2

2σ2 (recall KL(N (µ1, σ
2),N (µ2, σ

2)) = (µ1 − µ2)2/(2σ2)).

We need, KL(P0,P1) ≤ 1
n log(2), so choose δ = σ

√
2 log(2)

n .

Then,
R?n ≥

1

8
Φ

(
δ

2

)
=

1

8

δ2

4
=

log(2)

16
· σ

2

n
.

The sample mean achieves risk VarP(X )/n ≤ σ2/n, and hence σ2/n is the minimax
rate.

Expl: Our constants are loose than our previous approach, but that is ok.
Question: What is the Bayes’ estimator in this construction?

Ans: The prior is (1/2, 1/2) on P0,P1, and the Bayes’ estimator is obtained

by the NP test.
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Example 2: Mean estimation in a bounded domain

Let {X1, . . . ,Xn} be drawn i.i.d from some P ∈ P, where P = {P; supp (P) ⊂ [0, 1]}
contains all distributions in [0, 1]. Let the loss be Φ ◦ ρ(θ1, θ2) = (θ1 − θ2)2.

Lower bound. Choose P0 = Bern (1/2 + δ) and P1 = Bern (1/2). Therefore,

separation is δ. Using the KL ≤ χ2 inequality, we have, KL(P0,P1) ≤ (µ0−µ1)2

µ1(1−µ1) = 4δ2.

We want KL(P0,P1) ≤ log(2)
n , which is satisfied if we choose δ = 1

2

√
log(2)

n .

Therefore, R?n ≥
1

8
Φ

(
δ

2

)
=

1

8

δ2

4
=

log(2)

128
· 1

n
.

Upper bound. Using the sample mean, the minimax risk can be upper bounded by,

R?n = inf
θ̂

sup
P∈P

R(θ̂,P) ≤ sup
P∈P

R(sample-mean,P) = sup
P∈P

VarP(X )

n
=

1

4n
.

Hence 1/n is the minimax rate.
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Example 3: A simplified regression problem

Let S = {(X1,Y1), . . . , (Xn,Yn)} where Xi ∼ Unif (0, 1) and Yi is drawn from a
distribution with mean f (Xi ), and variance bounded by σ2. We will assume that the
regression function f (·) = E[Y |X = ·] is bounded in [0, 1] and is L-Lipschitz.

Expl: The regression function is bounded, but Y need not be unbounded.

Therefore,

P =
{
PXY ; PX = Unif (0, 1),

f (·) ∆
= E[Y |X = ·] is L-Lipschitz and bounded between 0 and 1

Y |X has variance bounded by σ2
}

We wish to estimate θ = f (1/2) = E[Y |X = 1/2] under the squared loss
Φ ◦ ρ(θ1, θ2) = (θ1 − θ2)2.

Expl: LeCam’s method is useful only for point estimation.
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Example 3: A simplified regression problem (cont’d)
Lower bound. To apply LeCam’s method, let

P0 : P0(Y |X = x) = N (f0(x), σ2),

P1 : P1(Y |X = x) = N (f1(x), σ2).

Therefore, δ = |θ(P0)− θ(P1)| = |f0(1/2)− f1(1/2)|.

Expl: I want to maximize my separation δ, but still make P0,P1

indistinguishable so that the KL is large. How would I do this?

Keep in mind that I have a Lipschitz constraint. 59/86



Example 3: A simplified regression problem (cont’d)

We will choose,

f0(x) = 0, f1(x) =


L(1/2− x) + δ if x ∈ (1/2, 1/2 + δ/L),

L(x − 1/2) + δ if x ∈ (1/2− δ/L, 1/2),

0 otherwise.

Hence, my separation is δ.
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Example 3: A simplified regression problem (cont’d)

Let us now upper bound the KL divergence between the two distributions:

KL(P0,P1) =

∫ 1

0

∫
p0(x , y) log

(
p0(x , y)

p1(x , y)

)
dydx

=

∫ 1

0

∫
p0(y |x)p0(x) log

(
p0(y |x)p0(x)

p1(y |x)p1(x)

)
dydx

As p0(x) = p1(x) = 1

=

∫ 1

0

∫
φ(y ; f0(x), σ2) log

(
φ(y ; f0(x), σ2)

φ(y ; f0(x), σ2)

)
dy︸ ︷︷ ︸

=KL(N (f0(x),σ2), N (f1(x),σ2))

dx

Denoting the normal pdf by φ.

=

∫ 1

0

1

2σ2
(f0(x)− f1(x))2 dx
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Example 3: A simplified regression problem (cont’d)

Recall,

f0(x) = 0, f1(x) =


L(1/2− x) + δ if x ∈ (1/2, 1/2 + δ/L),

L(x − 1/2) + δ if x ∈ (1/2− δ/L, 1/2),

0 otherwise.

KL(P0,P1) =

∫ 1

0

1

2σ2
(f0(x)− f1(x))2 dx

=
1

2σ2

(∫ 1/2

1/2−δ/L
L(x − 1/2 + δ/L)2dx +

∫ 1/2+δ/L

1/2
L(1/2 + δ/L− x)2dx

)

=
1

2σ2

L2

[
(x − 1/2 + δ/L)3

3

]1/2

1/2−δ/L

+ L2

[
(x − 1/2− δ/L)3

3

]1/2+δ/L

1/2


=

δ3

3σ2L
.
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Example 3: A simplified regression problem (cont’d)

We just showed KL(P0,P1) = δ3

3σ2L
.

We want KL(P0,P1) ≤ log(2)
n , so choose δ = (3σ2L log(2))1/3

n1/3 . Therefore,

R?n ≥
1

8
Φ

(
δ

2

)
=

1

8

δ2

4
= c

σ4/3L2/3

n2/3
.

N.B. We require δ ≤ 1 and δ/L < 1/2 (see our construction), as f : [0, 1]→ [0, 1]. So
this lower bound applies only when n ≥ max(3σ2L log2(2), 24σ2 log(2)/L2) (larger than
some constant).
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Example 3: A simplified regression problem (cont’d)

Upper bound. In Appendix A, we show that the following nearest neighbor estimator

θ̂ for θ(P) = EP [Y |X = 1/2], achieves R(θ̂, θ) ∈ O
(
σ4/3L2/3

n2/3

)
, so n−2/3 is the

minimax rate for this problem.

Let h be a parameter to be chosen later (to balance bias/variance),

N =
n∑

i=1

1 (Xi ∈ (1/2− h, 1/2 + h)) ,

θ̃(S) =


1/2 if N = 0,

1

N

n∑
i=1

Yi1 (Xi ∈ (1/2− h, 1/2 + h)) .

θ̂(S) = clip
(
θ̃(S), 0, 1

)
.

Expl: The slower n2/3 rate is because all our data is not exactly at X = 1/2.
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Why is Le Cam’s method (binary testing) insufficient?
LeCam’s method is useful only in relatively “easy” settings. For instance, they work
well for point estimation problems, i.e estimating a single parameter of a distribution.
In HW1, you will also apply it for estimating a categorical distribution.

However, as the following example illustrates, it does not always work well when there
are a large number of estimable parameters.

Normal mean estimation in Rd . Let P = {N (µ,Σ);µ ∈ Rd ,Σi ,i ≤ σ2}, and σ2 is
known. We wish to estimate the mean θ(P) = EX∼P [X ] in the L2 norm:

Φ ◦ ρ(θ1, θ2) = ‖θ1 − θ2‖2
2, ρ(θ1, θ2) = ‖θ1 − θ2‖2, Φ(t) = t2.

Upper bound: We can consider the sample mean, θ̂(S) =
∑n

i=1 Xi . Then,

R(θ̂,P) = E
[
‖θ̂(S)− θ(P)‖2

2

]
=

d∑
j=1

(
1

n

n∑
i=1

Xi ,j − θj

)2

=
σ2d

n
.

Expl: For 1D, it was σ2/n, whereas now it is dσ2/n.

You are estimating d different quantities, so you expect it to scale with d. 65/86



Why is Le Cam’s method (binary testing) insufficient? (cont’d)

Lower bound: Let us try applying LeCam’s method. Let,

P0 = N (0d , σ
2Id), P1 = N (δv , σ2Id), for some v such that ‖v‖2 = 1.

We have, KL(P0,P1) = δ2

2σ2 . So choose δ =
√

2 log(n)
n , so that KL(P0,P1) ≤ log(2)/n.

Therefore, (via the exact same calculations in Example 1), we have, the following lower
bound which is off by a factor d .

R?n ≥
1

8
Φ

(
δ

2

)
≥ log(2)

16

σ2

n
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Why is Le Cam’s method (binary testing) insufficient? (cont’d)

Intuition: The estimate can be wrong in many di-
rections. But Le Cam’s only allows you to capture
one such direction.

To get the right rates, we need to reduce this esti-
mation problem to multiple hypothesis testing.

Key challenge. We can apply Fano’s method for multiple testing, but constructing
alternatives for Fano’s method usually requires more work than Le Cam’s.
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Constructing alternatives for Fano’s method

We will look at two methods:

1. Tight packings

2. Gilbert-Varshamov Bound

We will start with tight packings.

Packing number. Let (X , ρ) be a pseudo-metric space and let A ⊂ X . Let ε > 0. A
set P ⊂ A is called an ε-packing of A if, ρ(x , x ′) > ε (note strict inequality) for all
x , x ′ ∈ P such that x 6= x ′.

The ε-packing number M(ε,A, ρ) is the size of the largest ε-packing of A.
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Example 4: Normal mean estimation in Rd

Let P = {N (µ,Σ);µ ∈ Rd ,Σi ,i ≤ σ2}, and σ2 is known. We wish to estimate the
mean θ(P) = EX∼P [X ] in the L2 norm:

Φ ◦ ρ(θ1, θ2) = ‖θ1 − θ2‖2
2, ρ(θ1, θ2) = ‖θ1 − θ2‖2, Φ(t) = t2.

We will establish a lower bound via the following 4 steps.

Recall the following Theorem. Let X = Rd and let ‖ · ‖ be any norm. Let

B = {x ∈ Rd ; ‖x‖ ≤ 1} be the unit ball. Then,
(

1
ε

)d vol(A)
vol(B) ≤ N(ε,A, ‖ · ‖) ≤ M(ε,A, ‖ · ‖).

Let U be a maximal δ packing of the L2 ball of radius 2δ in Rd . Let
P ′ =

{
N (u, σ2Id); u ∈ U

}
.

By the theorem above, |P ′| ≥=
(

1
δ

)d vol(2δB)
vol(B) =

(
1
δ

)d (2δ)dvol(B)
vol(B) = 2d .

Moreover, for any u, u′ ∈ U, we have ‖u−u′‖2 ≥ δ. Hence, the separation is at least δ.
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Example 4: Normal mean estimation in Rd (cont’d)

Recall, Local Fano for parameter estimation. Let S be an i.i.d dataset from some

distribution P ∈ P. Let {P1, . . . ,PN} ⊂ P such that N ≥ 16, δ ≥ ρ(θ(Pj), θ(Pk)), and

KL(Pj ,Pk) ≤ log(N)/4n for all j 6= k . Then, R?n ≥ 1
2 Φ
(
δ
2

)
.

Next, let us upper bound the KL divergence. For any Pu = N (u, σ2I ) and
Pu′ = N (u′, σ2I ), we have

KL(Pu,Pu′) =
‖u − u′‖2

2

2σ2
≤︸︷︷︸

radius 2δ

(4δ)2

2σ2
=

8δ2

σ2
.

We require KL(Pu,Pu′) ≤ log(|P ′|)
4n for all u 6= u′. As we showed that |P ′| ≥ 2d , it is

sufficient if we choose, δ = σ

√
d log(2)

32n . Therefore, by the local Fano method,

R?n ≥
1

2
Φ

(
δ

2

)
=

1

2

δ2

4
= c · σ

2d

n
.

This achieves the correct rate of d/n. As we need to satisfy the N ≥ 16 condition, the
lower bound is valid when d ≥ 4. 70/86



Gilbert-Varshamov Bound
Often3, it is convenient to consider alternatives in a hypercube in the following form,

P ′ = {Pω;ω = (ω1, . . . , ωm) ∈ {0, 1}m} ⊂ P.

But in this hypercube, the minimum distance between alternatives will be small
relative to the largest KL.

Let us revisit our normal mean estimation example, but consider the following
alternatives:

P ′ =
{
N (δω, σ2Id);ω ∈ {0, 1}d

}
,

We have,

min
ω,ω′

ρ(θ(Pω), θ(Pω′)) = min
ω,ω′
‖δω − δω′‖ = δ.

max
ω,ω′

KL(Pω,Pω′) =
maxω,ω′ ‖δω − δω′‖2

2

2σ2
=

dδ2

2σ2
.

3We will see several examples in the next two chapters. 71/86



Gilbert-Varshamov Bound (cont’d)

Recall, Local Fano for parameter estimation. Let S be an i.i.d dataset from some

distribution P ∈ P. Let {P1, . . . ,PN} ⊂ P such that N ≥ 16, δ ≥ ρ(θ(Pj), θ(Pk)), and

KL(Pj ,Pk) ≤ log(N)/4n for all j 6= k . Then, R?n ≥ 1
2 Φ
(
δ
2

)
.

We just showed: minω,ω′ ρ(θ(Pω), θ(Pω′)) = δ, maxω,ω′ KL(Pω,Pω′) = dδ2

2σ2 .

We want the max KL to be smaller than log(|P ′|)
4n = d log(2)

4n .

So choose, δ = σ

√
log(2)

2n . This gives,

R?n ≥
1

2
Φ

(
δ

2

)
=
δ2

8
� σ2

n
.

So we don’t get the d factor.
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Gilbert-Varshamov Bound (cont’d)

Why does this happen? The max KL is large relative to the min distance:
minω,ω′ ρ(θ(Pω), θ(Pω′)) = δ, maxω,ω′ KL(Pω,Pω′) = dδ2

2σ2 .

We can try removing elements from this cube to make the distance large, but then the
number of alternatives will become too small. We still need exponentially many
alternatives to get a tight lower bound.

The GV bound says that we can find a large subset of {0, 1}m so that the minimum
distance is large.
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Gilbert-Varshamov Bound (cont’d)

The Gilbert-Varshamov Bound is a classical result in coding theory. The following is
one version of this result.

Theorem, Gilbert-Varshamov bound. Let m ≥ 8. For any two ω, ω′ ∈ {0, 1}m, let
H(ω, ω′) =

∑m
i=1 1(ωi 6= ω′i ) denote the Hamming distance.

Then, there exists Ωm ⊂ {0, 1}m such that

I |Ωm| ≥ 2m/8.

I for all ω, ω′ ∈ Ωm, we have H(ω, ω′) ≥ m/8.

I 0m ∈ Ωm.

We will refer to Ωm as the Gilbert-Varshamov pruned hypercube.
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Example 4 revisited: Normal mean estimation in Rd

Let P = {N (µ,Σ);µ ∈ Rd ,Σi ,i ≤ σ2}, and σ2 is known. We wish to estimate the
mean θ(P) = EX∼P [X ] in the L2 norm:

Φ ◦ ρ(θ1, θ2) = ‖θ1 − θ2‖2
2, ρ(θ1, θ2) = ‖θ1 − θ2‖2, Φ(t) = t2.

Lower bound. Let us consider the following alternatives,

P ′ =
{
N (δω, σ2Id);ω ∈ Ωd

}
,

where Ωd is the Gilbert-Varshamov pruned d-hypercube.

We then have,

min
ω,ω′∈Ωd

ρ(θ(Pω), θ(Pω′)) = min
ω,ω′∈Ωd

‖δω − δω′‖

= δ min
ω,ω′∈Ωd

√
H(ω, ω′)

≥ δ
√
d/8. By Gilbert-Varshamov bound

So the separation is δ
√
d/8.
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Example 4 revisited: Normal mean estimation in Rd (cont’d)

Recall, Local Fano for parameter estimation. Let S be an i.i.d dataset from some

distribution P ∈ P. Let {P1, . . . ,PN} ⊂ P such that N ≥ 16, ρ(θ(Pj), θ(Pk)) ≥ δ, and

KL(Pj ,Pk) ≤ log(N)/4n for all j 6= k . Then, R?n ≥ 1
2 Φ
(
δ
2

)
.

Now, let us compute the maximum KL,

max
ω,ω′

KL(Pω,Pω′) =
maxω,ω′ ‖δω − δω′‖2

2

2σ2
=

dδ2

2σ2
.

We want the max KL to be smaller than log(|P ′|)
4n = (d/8) log(2)

4n . So choose,

δ = σ

√
log(2)

16n . This gives,

R?n ≥
1

2
Φ

(
δ
√

d/8

2

)
=
δ2d

64
=

log(2)

1064

dσ2

n

Therefore, σ2d
n is the minimax rate.

N.B. We require N ≥ 16, i.e., 2d/8 ≥ 16. So this applies only when d ≥ 32.
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Summary
Let us quickly summarize how we prove lower bounds for learning problems.

I Reduce estimation to hypothesis testing (RTT): For alternatives that are
δ-separated in the loss L,

R? = inf
Â

sup
P∈P

ES∼P

[
L(Â(S),P)

]
≥ δ · inf

ψ
max
j∈[N]

Pj(ψ 6= j).

Parameter estimation: for alternatives that are δ-separated in some metric ρ,

R? = inf
θ̂

sup
P∈P

ES∼P

[
Φ ◦ ρ(θ(P), θ̂(S))

]
≥ Φ

(
δ

2

)
inf
ψ

max
j∈[N]

Pj(ψ 6= j).

I LeCam’s method: reduces to a binary hypothesis testing problem:

max
j∈{0,1}

Pj(ψ 6= j) ≥︸︷︷︸
max≥avg

1

2
(P0(ψ 6= 0) + P1(ψ 6= 1)) ≥︸︷︷︸

NP-test

1

2
‖P0∧P1‖ ≥

1

4
e−KL(P0,P1).

Useful mostly for point estimation problems. 77/86



Summary (cont’d)

I Fano’s method: reduces to a multiple hypothesis testing problem:

max
j∈[N]

Pj(ψ 6= j) ≥︸︷︷︸
max≥avg

PV ,S(ψ 6= V )︸ ︷︷ ︸
1
N

∑N
j=1 Pj (ψ 6=j)

≥︸︷︷︸
Fano’s inequality

1− I (V , S) + log(2)

log(N)
.

By bounding I (V ,S) we get the global and local Fano methods.

I Need to construct alternatives {P1, . . . ,PN} for the local Fano method carefully,
using tight packings or the Gilbert-Varshamov bound.

I Four steps to establishing a lower bound:

1. Construct alternatives.

2. Lower bound the separation.

3. Upper bound the KL divergence.

4. Compute the lower bound.
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Plan going forward

We will prove lower bounds for the following problems:

I Ch 2.1: Nonparametric regression (lower and upper bounds)

I Ch 2.2: Nonparametric density estimation

I Ch 3: Lower bounds for excess risk based prediction problems.

I Ch 4 onwards: lower bounds for stochastic/adversarial bandits, mostly using the
Bretagnolle-Huber inequality.
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Appendix
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Appendix A: Upper bound for Example 3

Upper bound. (Read at home)

We will design the following nearest neighbor estimator θ̂ for θ(P) = EP [Y |X = 1/2].

N =
n∑

i=1

1 (Xi ∈ (1/2− h, 1/2 + h)) ,

θ̃(S) =


1/2 if N = 0,

1

N

n∑
i=1

Yi1 (Xi ∈ (1/2− h, 1/2 + h)) .

θ̂(S) = clip
(
θ̃(S), 0, 1

)
.

We will specify the value of h shortly.
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Appendix A: Upper bound for Example 3 (cont’d)
Note that N is a Binomial (n, 2h) random variable. Let us define G = {N ≥ hn} to be
the “good event” in which a sufficient number of points fall within the
[1/2− h, 1/2 + h] interval. We have, by Hoeffding’s inequality,

P(G c) = P

(
n∑

i=1

1(Xi ∈ (1/2− h, 1/2 + h)) ≤ nh

)

= P

(
n∑

i=1

(1(Xi ∈ (1/2− h, 1/2 + h))− 2h) ≤ −nh

)
≤ e−2nh2

.

We can now write,

E
[
(θ̂(S)− θ)2

]
≤ E

[
(θ̃(S)− θ)2

]
= E

[
(θ̃(S)− θ)2

∣∣∣G]P(G )︸ ︷︷ ︸
≤1

+ E
[
(θ̃(S)− θ)2

∣∣∣G c
]

︸ ︷︷ ︸
≤1/4 as f is bounded in [0, 1]

P(G c)︸ ︷︷ ︸
≤e−2nh2
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Appendix A: Upper bound for Example 3 (cont’d)

To upper bound E[(θ̂(S)− θ)2|G ], let us denote Ai = 1(Xi ∈ (1/2− h, 1/2 + h)) and
expand (θ̃(S)− θ)2 as follows:

(
θ̃(S)− θ

)2
=

(
1

N

n∑
i=1

AiYi − θ

)2

=

(
1

N

n∑
i=1

Ai (Yi − f (Xi ))︸ ︷︷ ︸
v

+
1

N

N∑
i=1

Ai (f (Xi )− θ)︸ ︷︷ ︸
b

)2

= v2 + b2 + 2bv .

You may interpret b as the bias and v2 as the variance. The quantity v captures the
extent to which the observations Yi deviate from their expected values f (Xi ), while b
quantifies the deviation of θ = f (1/2) from the surrounding f (Xi ) values, as we
consider an interval around 1/2.
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Appendix A: Upper bound for Example 3 (cont’d)

Now, let us bound the individual terms. We will start with v .

E[v2] = E

E
( 1

N

n∑
i=1

Ai (Yi − f (Xi ))

)2 ∣∣∣∣∣G ,X1, . . . ,Xn


= E

[
E

[
1

N2

n∑
i=1

Ai (Yi − f (Xi ))2

∣∣∣∣∣G ,X1, . . . ,Xn

]]

= E

[
E

[
1

N2

n∑
i=1

Ai Var(Yi |Xi )

∣∣∣∣∣G ,X1, . . . ,Xn

]]
Note that E[Yi |Xi ] = f (Xi )

= E

[
E

[
σ2N

N2

∣∣∣∣∣G
]]
≤ σ2

nh
. As N ≥ nh under G.
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Appendix A: Upper bound for Example 3 (cont’d)

Next, let us consider b. For any Xi ∈ (1/2− h, 1/2 + h), we have

|f (Xi )− f (1/2)| ≤ L|Xi − 1/2| ≤ Lh.

Hence,

|b| =

∣∣∣∣∣ 1

N

N∑
i=1

Ai (f (Xi )− θ)

∣∣∣∣∣ ≤ 1

N

N∑
i=1

Ai |f (Xi )− θ| ≤
1

N

N∑
i=1

AiLh = Lh.

Therefore, E[b2|G ] ≤ L2h2.

Finally, let us consider the cross-term. As E[Yi |Xi ] = f (Xi ), we have,

E[bv |G ] = E

[
b · EY

[
1

N

N∑
i=1

Ai (f (Xi )− θ)

∣∣∣∣∣G ,X1, . . . ,Xn

]]
= 0.
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Appendix A: Upper bound for Example 3 (cont’d)
Therefore,

E
[(
θ̂(S)− θ

)2
]
≤ e−2nh2

+
σ2

nh
+ L2h2.

Choosing h = σ2/3

L2/3n1/3 , we get

E
[(
θ̂(S)− θ

)2
]
≤ exp

(
−2σ4/3

L4/3
n1/3

)
+ 2

σ4/3L2/3

n2/3
.

Therefore, the bound is tight in L, σ if we know L, σ.

If L, σ are unknown, we can still choose h = n−1/3. Then, it is still tight in n,

E
[(
θ̂(S)− θ

)2
]
≤ exp

(
−2n1/3

)
+

1

n2/3

(
L2 + σ2

)
.

N.B. Had we used Chernoff’s instead of Hoeffding’s to control P(G c), we would have

a slightly faster rate in the lower order e−n
1/3

term. 86/86


