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Introduction

Why study statistical lower bounds?

» Understand the fundamental difficulty of a learning (estimation) problem.

> Assess whether our learning algorithm is optimal or how far it is from the best
possible performance.

Plan of attack.
» Ch 1: Develop core techniques. Apply them to simple parameter estimation
problems.

» Ch 2-6: Apply these tools to classification, regression, density estimation, bandits,
online learning, online convex optimization:

1. Define the learning problem.
2. Design an algorithm and establish an upper bound on risk/regret.

3. Use techniques from this chapter to derive (matching) lower bounds.
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Ch 1.1: Lower bounds for point estimation

Point estimation. Estimate a single parameter §(P) € R of distribution P using data
(e.g the mean of a distribution).

A point estimation problem has the following components:

1. A known family of distributions P.

2. A dataset S of n points drawn i.i.d from an unknown distribution P € P.
3. A parameter of interest § = 6(P) € R.

4. An estimator 6 = A(S) € R. An estimator is any function of the data.

5. A loss function £: R x R — R to evaluate how well we have estimated 6.

~ ~

6. The risk R(P,8) = Es.pa[((0(P), 8(S5))].

We will overload notation: a) Parameter as a scalar 6 € R or a function 6 : P — R.

b) Estimate (a random variable) & € R or an estimator (function) 6 : data — R.
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Example 1: Normal mean estimation

In the normal mean estimation example in HWO:
. P = {N(u,c?); u € R}, where o2 is known.

1

2. Data S ={Xi,..., Xy} where X; ~ P.

3. Parameter §(P) = Ex..p[X].

5. Loss function £(61,602) = (61 — 62)2.

6. Risk R(6,0) 2 R(N(8,02),8) = Exppr[(8(P) — 0(S))2.
4

. In HWO, you saw two possible estimators:
- 1< ~ «
] I 1 0 = — X,', i) 6 = X,'.
(i) Sample mean: 60:(S) n; (ii) 62(S) Z

And showed

R(0,01) = Exppo[(0(P) — 01(S))?] = "; R(6,6,) = 6%(1 — o) + o
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Example 1: Normal mean estimation (cont'd)

0'2 (1202
Zx,, R(6,0,) = —. ZX R(6,6,) = 6*(1 — a)? +

n

The following figure illustrates both risks as a function of 6.

R N
R(6,5,)

R(8, )

7

—>

51 is better for some values of 6 and 52 is better for other values.
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Example 1: Normal mean estimation (cont'd)

Question: Can you design an estimator 6 which minimizes R(6, 6’) for all 7

That is, R(6, 9) < R(0, 9’) for all ¢ and all o € R.

Ans: No. If we choose A(S) = 6 for some § € R, it will do well when P = A/(6, 52).
No estimator can do better.
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Optimal estimators

As ‘pointwise’ optimality is too strong, we usually resort to one of two versions of
optimality.
1. Minimax optimality: 9 minimizes the maximum risk over a class of distributions
P, i.e suppep R(P,6).

2. Average risk optimality: ) minimizes the average risk over a distribution of
distributions A, i.e., Ep a[R(P, 6)].
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Average (Bayesian) Risk Optimality

Average Risk. Introduce a probability A over P and define:

~

() |P]

~ -~

Ra(0) £ Ep-a[R(P,0)] = Epp [ESNP" [5(9(P)7

- In the Bayesian paradigm, A is called the prior.
- O(P) is treated as a random variable, since P ~ A.
- An estimator 5/\ minimizing R is the Bayes’ estimator.

- The minimum Ry (6) is the Bayes’ risk.
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Finding the Bayes’ Estimator

How do we find 5/\? Let us write,

—_— o~

Ru(B) = B [ [(0(P). 8(5) | P]] = 5| 50 [16(P).8(S) |5
(%)

If § minimizes () = Ep[¢((P),0(S))|S] for all S, then @ is the Bayes' estimator.
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Bayes' Estimator under Squared Loss

Lemma. If £(61,602) = (61 — 62)?, then the Bayes' estimator is the posterior mean,
i.e., Ep[0(P)|S]. Moreover, the Bayes' risk is Es [Varp[0(P)|S]].

Proof. Let 5(5) = Ep[0(P)|S]. For any other estimator &

Ep[(@ —0)°|S] =Ep [(@ —0+0—0)|S]
=Ep[(0' — 0)?| S]+ Ep[(6 — 0)*| S] + 2(6" — O)ER[0 — 0| 5]
=Ep[(0' — )| S] + Ep[(6 — 0)*| 5]
> Ep[(0 - 0)*|S].

Thus, 5(5) E[0]S] minimizes the risk. The second statement follows from the
observation that E[0]S] = 6 and hence Ep[(6 — 6)2 | ] is the posterior variance
Varp[6|S].
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Example: Normal-Normal Model in HWO0

Setup. S ={X1,...,X,} "= N (1, 02), 02 known. i ~ A = N (v, 72).

Posterior. You will show, 0|S ~ N(7,72), where

~ 02/n + ZX ~2 1 n 1 -1
VvV = 14 = — R .
724 02/n +02/n 4 72 02/n

Bayes’ Estimator and Bayes’ Risk.

-1
0NS) =7,  Ra(Bp) =Es[73] =72 = <1 N 1) '

72 o2/n
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Example: Bernoulli-Beta Model in Ch0

Setup. S ={Xi,..., Xy} "% Bern (). p~ N = Beta(a, b).

Posterior.
0|S ~ Beta(X +a, n— X + b), X = Zx,-.

Bayes’ Estimator.

~ X+a

Bayes’ Risk.

o~ X + a 2
R/\(Q/\) = E# |:EX~Binomial(n,p,) |:<I'I+a—|—b — 9) :|:|
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Minimax Optimality

Goal. We wish to find an estimator that minimizes the maximum risk over a class of
distributions P:

~

sup R(P,0).
PeP

Minimax Risk.

R* = inf sup R(P,0) = inf sup Es..pn |£(8(P),0(S))] .
0 PeP 0 PeP
- R* depends on P, ¢ n,....

- Sometimes we write R;(P, ) to make this dependence explicit.

~

- An estimator § achieving R* = infzsuppep R(P,0) is called a minimax estimator.
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Computing the Minimax Risk

Classical Approach: Find least favorable priors and corresponding Bayes' estimators
with constant frequentist risk.

Our Recipe. We will instead use the following approach:

1. Upper bound: Design a “good” estimator 9 and upper bound its risk:

Ry < sup R(P,0) < U
PeP
2. Lower bound: Choose a prior A with supp (A) C P and lower bound the Bayes’

risk by L,. Therefore we have,
Ry =inf sup R(P,0) > |%prN/\[R(P, 0)] Epa[R(P,0p)] > L,

o pep max>avg Bayes’ estimator

3. If U, = L,, we have the exact minimax risk, and 0 is minimax optimal.

4. If U, € O(L,), we have the minimax rate, and 9 is rate-optimal.
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Example 1: Gaussian Mean Estimation

Setup. P = {N(p,0?) : u € R}, with known 2. Let S = {X1,..., X,} bei.id.

Claim. The sample mean 7i(S) = £ 37 | X; is minimax optimal for squared loss.

Upper Bound. From HWO, you know

2 0.2

sup R(u, 11) = sup Es nru02) (1 — 7i(S))?] = sup — = —.
pep pER peErR N n

Thus, R* < o2 /n.
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Example 1: Gaussian Mean Estimation (cont'd)

Recall, for the normal-normal model, the Bayes' risk is

RA(Bp) = Bs[] = 72 = <712 + 021/”>1

Lower Bound. Take prior A = A/(0,72). From previous example, we have,

1

1 1 -
2 + o2/n

R*ZLn:

Taking sup, gives R* > o2/n.

Therefore, the sample mean is (exactly) minimax-optimal.
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Example 2: Bernoulli Mean Estimation

Setup. P ={Bern(u): p€[0,1]}. S={X1,..., X} i.id. from P € P.

Upper Bound. We will use the sample mean 7i(S) = 2 -7 1 Xi. Then,

~n

PeP n€ef0,1]
X 1-—
~ sup Var,(X) _ sup p(1— p)
W n w n
1 A
=—=U,.
4n "

Thus, R* < 1/(4n).
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Example 2: Bernoulli Mean Estimation (cont’d)
Lower Bound. Use A = Beta(a, b). Then you can show (Try at home)
Ly = Ra(Bn) = Bu[i2)((a + b2 — n) + By [ul(n — 2a(a + b)) + .
Choosing a = b = /n/2 gives:

1 1

L,= = :
4/n+1)2 4n+8yn+4

Clearly, U, > Ly, but U,, L, € ©(1/n). Hence, 1/n is the minimax rate.

An exactly minimax-optimal estimator is:

~ N 1
9(5):1+ﬁ-n§x,-+2(1+ﬁ).

18/86



Takeaways and Next Steps

Limitations of this approach. Need to design a prior and compute posterior. This is
not easy for complex distributions.
E.g: Nonparametric regression: all Lipschitz functions in [0,1]9.

Next. We will move to lower bounds beyond point estimation using hypothesis
testing. This approach is more general.
Lessons Going Forward.

» Maximum risk > average risk (key idea for lower bounds).

» Choose good priors, possibly depending on n.

» Still need to design good estimators.
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Ch 1.2: Lower bounds for hypothesis testing

Plan for the remainder of the chapter.
» Lower bounds for hypothesis testing
1. Le Cam’s method for binary hypothesis tests

2. Fano's method for multiple tests

» Reduction from learning (estimation) to testing
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Hypothesis test

Hypothesis test. Let P be a class of distributions and let P1,..., Py be a partition
of P. Let S be a dataset drawn from some P € P. A (multiple) hypothesis test 1) is a
function of the data which maps to [N] = {1,..., N}. If ©0(S) =, then the test has
decided that P € P;.

In this class, we will focus on cases where P; = {P;} is a singleton for all ;.

Let P;(¢ # j) = Psp,(1(S) # j) is the probability that ¢» does not correctly identify j
when the data comes from P;.
- As before, we will overload notation, and view ¢ as both a function and a RV.

Lower bound. We wish to show that no test can simultaneously do well on all
alternatives. Equivalently, any test will do poorly on at least one alternative:

igfj(g[al\ﬁ P;i((S) # j) > Something large.
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Ch 1.2.1: Le Cam’s method for binary hypothesis tests

Binary hypothesis test. A hypothesis test with just two alternatives Py, P;.

Neyman-Pearson test. Let data S come from either distribution Py or Py, with
densities pg, p1 respectively. The Neyman-Pearson test is a binary hypothesis test

which chooses,
0 if po(S) = p1(S),
1 if po(S) < pa(S5).

[¥))

Ynp(S) = {

N.B. : When the dataset is an i.i.d sample, we should view pg, p1 as the product
density.
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Neyman Pearson Test (cont'd)

Theorem. The sum of errors is minimized by the Neyman-Pearson test. That is, for

any other test v,

Po(v #0) + P1(¢ # 1) > Po(¢np # 0) + Pi(¥np # 1).

Proof. Write the LHS as,

Po( = 1)+ Py( = 0) = /w Pl + /w _ prld

2/ Po+/ Po+/ P1+/ P1
Y=1,np=1 P=1,9np=0 P=0,np=1 »=0,)np=0

Z/ Po+/ P1+/ Po+/ p1
P=1,np=1 Pp=1,np=0 »=0,np=1 »=0,)np=0

=/ Po +/ p1 = Po(¥np =1)+ Pi(¢np = 0)
» »

Nnp=1 np=0
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Neyman Pearson Test (cont'd)
Corollary (Bretagnolle-Huber inequality). For any binary hypothesis test 1,
1
Po(1h #0) 4+ Pi(p #1) > ||[PoAPL||=1—TV(Py, Py) > Ee—KL“’Ov”l).

Recall from ChO:
1 1
TV(P,Q) = 5IP= Qli=1-PAQI  [[PAQ|> ;e 1P,

Proof. The first inequality follows from the NP test, and the observation,

Po(vnp = 1) + Pi(¢np = 0) = / Po +/ p1 = /min(P07P1) = ||Po A P1].
po<p1 pP1<po

The remaining claims follow from the relations we proved about divergences.
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Le Cam’'s method

LeCam’s method: LeCam’s method for binary hypothesis testing simply combines
“max > avg” with the BH inequality. We can summarize it as follows:

. L1
'ijer?gﬁ} Pi((S) #J) = 5 inf (Po(1(S) #0) + Pi(¥(S) # 1)) max > avg
1

= (Po(¥np(S) # 0) + Pi(np(S) # 1) NP test
1
= SlPo AP

Z Ee_KL(POaPI).

a Affinity-KL bound

N.B. The KL version is the easiest to apply but you can also use TV/L1 or
Chi-squared.
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Example: normal vs normal

Suppose a dataset was drawn from A (u, 02) where 02 is known and u € {0, A},
where A > 0. Consider the following hypothesis test?,

Choose 9(S) =0 if ZX else choose 1(S) = A.
In HWO, you showed that with O (62A™2 log(1/)) samples, this test can achieve
Po((S)=0)>1-6,  Pa((S)=A)>1— 6 (1)

We will now show that Q2 (O'2A_2 Iog(l/é)) samples are also necessary for any test
that achieves (1).

'Try at home: Show that this is in fact the Neyman-Pearson test.
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Example: normal vs normal (cont'd)

Recall: —
S KL (11, 02), N (12, 02)) = % KL(P", Q") = nKL(P, Q),
Le Cam’s method: inf max P;(y(S) #j) > e KL(Po,Pr)

¥ je0,1]

Let ¢ be such that, with n samples we have Py(¢(S) = 0)
PA((S) = A) > 1—6. Thatis, max,cqo ) Pu(tp # 1) <
Hence, by Le Cam’s method:

0> max P,(v #p) > mf max P, (¢ # p)

>1-—4, and
0.

pe{0,A} pe{0.A}
1

> 2P (=KL (NV(0,0%)", N(A,02)")) Le Cam’s
1 A2 ,

= Z exp|\—n- E KL properties

Hence, n > 2” log(1/(49)).
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Ch 1.2.2: Fano’s method for multiple hypothesis tests

Multiple hypothesis test. A hypothesis test with more than two alternatives Py, P;.

Goal. Show,

igfjnewm(] P;i((S) # j) > Something large.

and this lower bound should grow with M.
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Data Processing Inequality

Theorem. Let X, Y, Z be random variables such that X | Z|Y. Then,
I(X,Y)>1(X,Z) andhence H(X|Y)<H(X]|2).

Think of X, Y, Z as forming the Markov chain: X —» Y — Z.

Intuition and Connections to Hypothesis Testing.

» We assume a prior over {P1,..., Py}. Let X € [N] be the random variable
selecting one.

v

Data Y is generated from Px.
A test Z estimates X from Y.

v

v

1(X,Z) < I(X,Y) says the test contains no more information about X than Y/,
i.e., you cannot magically learn more about X by processing information in Y.

Similarly, H(X|Y) < H(X|Z) says knowing the data Y reduces uncertainty about
X at least as much as knowing only the outcome of the test Z.

v
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Fano's Inequality

Fano’s inequality. Let X be a discrete random variable with support X'. Let
X — Y — X form a Markov chain. Define:

Pe 2 IP)(? # X), h(pe) 2 —pe log(pe) — (1 — pe) log(1 — pe).
Then, (+4) )
H(XIY) < H(XIX) < pelog(|X] — 1) + h(pe)-
Hence
' o H(X|Y) — log(2)
HXFX) 2 = og10)

Connection to Hypothesis Testing.
» X €[1,...,N]isa RV, Y is the data, X is the test to identify X from Y.
> pe = IP’()A( # X) is the probability of error.
» Fano's inequality quantifies the relationship between p. and H(X|Y).
e.g., If Y uniquely identifies X, then H(X|Y) = 0 and the lower bound is vacuous.
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Proof of Fano's Inequality

Proof. Let £ = 1(X # X).
Use the chain rule for entropy in two ways:

H(E, X|X) = H(X|X) + H(E|X,X) = H(E|X) + H(X|E, X).
Now note:
- H(E|X,X) = 0 since X, X determine E.
- H(E|)A() < H(E) = h(pe) since conditioning reduces entropy.

- Next:
H(X|E,X) =P(E = 0) H(X|X,E = 0) + P(E = 1) H(X|X,E = 1)

= (1= pe) -0+ pe - HIXIX,E=1)

< pe log(|X] —1).
Here, we used (a) if E =0, then X = X, so H(X|X,E =0)=0, and (b) if E =1,
there are at most |X'| — 1 possible outcomes.
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Proof of Fano's Inequality (cont’d)
Combining results: R
H(X|X) < h(pe) + pe log(|X| — 1),
which is inequality (x).
From the conditional entropy version of the data processing inequality:
H(X|Y) < H(X|X),
which is ().
Finally, since h(pe) = H(E) < log(2), we get:

H(X|Y) — log(2)
Pe " iog(lX])
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Fano's Method

Theorem (Fano’s Method). Let S be drawn from some P € {P1,..., Py} C P and
let 1) denote tests which map S to [N]. Then, the following statements hold:

1. Global Fano method: Denote P = % S"N P, Then,

& 2je1 KL(P;, P) + log(2)
log(N) '

mf max P;(¢(S) # j) > (1

Y je[N]

2. Local Fano method:

mf max P;(¢(S) # j) >

¥ je[N]

1_ 2 2oje1 St KL(Pj, Pi) + log(2)
log(N) :

Global Fano is tighter, but harder to apply since computing KL(P;, P) can be difficult.

Local Fano is looser but easier to apply since it only requires pairwise KL divergences.
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Proof of Fano's Method

Setup. Define the following data-generating process:
» Define a uniform prior over {P1,...,Py}: P(V =j)=1/N.
» Given V = j, sample S from P;.

The marginal distribution of S is P, where for any set A,

N N

P(SeA) =D P(ScAV=/P(V=j)=15> Pi(A) =P(A)

j=1 j=1

As max > avg, and V induces a uniform prior on [N], we have

inf max P(4(S) £J) = inf Pu.s(6(S) # V).
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Proof of Fano's Method (cont'd)
Fano's inequality: For X — Y — X, P(X # X) > H(X]Y)—log(2)

We want to show, et . N
PICITE (1 L5 IKIFO(ngNg’)MOg( )) . (1 W Dkt Iﬁig})mﬂog(z))_
By Fano's inequality, for any test 1):
Py s((S) # V) > H(V||2(7V|)°g(2) Fano’s inequality
_HvV) = IIE)Z(,%) “108(2)  ging 10X, V) = HOX) — HXIY)
—1- /(V’ELELNI;g(2). As H(V) = log(N)

This gives: . 1V, S) + log(2)
max P((S) 1) = (1 L ) . )
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Proof of Fano's Method (cont.)

Bounding Mutual Information. Let p; be the density of P;, p be the density of P, and
p be the density of the joint distribution P of (V,S). We expand (S, V) as follows:

I(S,V) =Esy {'Og (Mﬂ

_ZN:/ (S=slV=j)P(V=j)lo (pj(s).’%’>ds
= L) _pj(s) —/ a/—/w\jj S\B(S) %
N
_ log [ Pi(S)
=2 [ P! (%)
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Proof of Fano's Method (cont.)

Jensen’s inequality. For convex f, f(E[X]) < E[f(X)].

By Jensen's inequality, and convexity of KL in the second argument, we have

P, P) = Es.p, |lo "J(S)>]
L% F) ES”J“( LY p(S)

()

< Es~p

Therefore,
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Proof of Fano's Method (cont'd)

We have shown,

max P;(4(S) #Jj) =

(1 CI(V,S) + |og(2)> |

JEIN] log(N)
(a) 1 N _ 1 L&
I(S,V) = N;KL(PJ-,P) < Nz;;KL(Pj,Pk)

Putting it altogether we get,
3 501 KL(P;, P) + log(2)
log(N)

N
> (1- A jik=1 KL(Pj, Pi) + log(2)
- log(N)

max P;(¢(5) #J) = (1 -

By (a) — Global Fano
JelN]

) . By (b) — Local Fano
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Reduction from Learning to Testing

Estimation (learning) is a generalization of hypothesis testing.

A typical estimation (learning) problem. Given a class of distributions P, data S is
drawn from some P € P, identify? the distribution P.

A typical hypothesis testing problem. Data S is drawn from some
P e {P;,...,Py} C P. Identify the distribution P.

Hence, testing is easier than learning. From any learning algorithm, we can device a
testing procedure as follows:

~ Let P be the distribution chosen by a learning algorithm.

- Choose the element in {P1,..., Py} that is “closest” to P.

Therefore a lower bound for testing = a lower bound for learning.
- If we carefully design alternatives {Pi, ..., Py}, we can in fact get tight lower bounds.

2Usually we may only be interested in learning a parameter of interest §(P) instead of the entire
distribution, but we will ignore this distinction for now. 39/86



A learning problem

- Let P be a known family of distributions.
- We observe data S drawn some unknown distribution P € P.

- An algorithm A maps the data to an action space A. Letting D denoting the data
space, we can write A: D — A.

- The learner incurs a loss L(A, P) for choosing action A when the distribution is P,
where L: A X P — R,

- We will assume, for all P € P, we have inf4 L(A, P) = 0. This is often w.l.o.g as we
can always redefine, L4(A, P) 2 L(A, P) — infacu L(A', P).

- Define the risk of an algorithm as, R(ﬁ, P) =Es.p [L(K(S), P)} .

- The minimax risk: R*(P) = inf zsuppep R(A, P).

If P is clear from context, we will simply write R*.
If there are ni.i.d data, we will write R} to emphasize this.
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Example 1: Normal mean estimation

- Let P = {N(0,02); 0 € R} where 02 is known a priori.

- We observe an i.i.d datset S = {Xq,..., X,} from some unknown A (6,0?).
Hence, dataspace D = R".

- We wish to estimate the mean, so the action space is R.

- An (algorithm) estimator i : R" — R.

- The loss, L(p/, N (0,02)) = (1/ — 0)?. We have infcg L(i/, N'(0,02)) = 0 for all
0 € R.

- Risk, R( N (0. 0) = Es. o0 [((S) ~ 0.

- Minimax risk

Ry = infsup Espp,02) [((S) — 6)°]
i 9cR

41/86



Example 2: Mean estimation (more generally)

- Let P be a family of distributions such that supp (P) C RY for all P € P.
- We observe an i.i.d datset S = {Xi,..., X,} from some P € P.

- The action space is RY.

- An (algorithm) estimator /i : (R9)" — RY.

- The loss, L1/, P) = ||u/ — u(P)]||5, where p > 1 and u(P) = Exp[X].
We have inf ,cpa L(y',P)=0.

- Risk, R(7. P) = Esp [|(S) — 1(P)2].

- Minimax risk

R’ = inf sup Espn [||7i(S) — u(P)|2]
B pep
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Example 3: Regression in L, norm

- Let X be an input space.
- Let P be a family of distributions with supp (P) C X x R for all P € P.
- We observe an i.i.d datset S = {(X1, Y1),...,(Xs, Yn)} from some P € P.

- An algorithm will, based on the data, produce a function to predict Y from X.
Hence, the action space is R* = {g : X — R}.

- An (algorithm) estimator Fr (X x R)" — RY,

- The loss, L(f', P) = ||f' — f(P)||3, where f(P) is the regression function, i.e.,
F(P)(-) =Ep[Y|X = ]. Here, |[|f' — f(P)|3 = [(f'(x) — f(P)(x))*dx.

We have infgcpa L(f', P) = 0.

_ Risk, R(f, P) = Es.pn [Hf(S) - f(P)||§]

PHnmRCnE Ry = inf sup Espn [IF(S) - F(P)I3]
i pPep
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Learning algorithms (cont'd)

The previous examples are instances of parameter estimation.
- You are estimating a parameter (property) 6 of the distribution.
- E.g mean in Examples 1 and 2, regression function in Example 3.

Learning problems are not always formulated in this form.
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Example 4: Regression, excess risk in a hypothesis class

- Let X be an input space. Let P be a family of distributions with supp (P) C X x R
forall P € P.

- We observe an i.i.d datset S = {(X1, Y1),...,(Xn, Yn)} from some P € P.

- Let H C RY be a hypothesis space.

- An algorithm h will, based on the data, choose some h € H as the predictor.
That is, the action space is # and h: (X x R)" — H.

- Define the instance loss as £(h, (X, Y)) = (h(X) — Y)2.

- The population loss is L(h, P) = Ex. y~p[¢(h, (X, Y))] = Ex.y~p[(h(X) — Y)?].
Here, we do not have infuey L(h, P) = 0.
Therefore, define the excess population loss Ly /(h, P) = L(h, P) — infp ey L(H', P)

- Define the excess risk,
R(h, P) = Es.pn [LH(h(S), P)] — Es.pn [L(h(S), P)] ~infaey L(H, P).

- The minimax risk R; = infzsuppcp R(h, P).
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Example 5: Classification, excess risk in a hypothesis class

- Let X be an input space. Let P be a family of distributions with
supp (P) C X x {0,1} for all P € P.

- We observe an i.i.d datset S = {(X1, Y1),...,(Xs, Ys)} from some P € P.

- Let H C {0, 1{5 be a hypothesis space.
- An algorithm h will, based on the data, choose some h € H as the predictor.

- Define the instance loss as ((h, (X, Y)) = 1(h(X) # Y).

- The population loss is L(h, P) = Ex y~p[l(h,(X,Y))] =Px y~p(h(X) #Y).
Define the excess population loss Ly(h, P) = L(h, P) — infpey L(H, P)

- Define the excess risk and minimax risk similar to Example 4.
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Reduction to testing

Separation between distributions. In a given learning problem with loss L and action
space A, we define the separation A(P, Q) between two distributions P, Q as follows:

A(P,Q) =sup {320, LAP)<s — L(AQ) 24 VAEA
LAQ)<s = LAP) =6 VAEcA
A set of distributions {P1, ..., Py} are d-separated if A(P;, Px) > 6 for all j # k.

Theorem (Reduction to testing). Let S be drawn from some distribution P € P.
Let {P1,...,Pn} be a §-separated subset of P. Let ) be any test which maps the
dataset to [N]. Then,

R*(P)>0- if}gﬁ@ﬁ Psop,(¥(S) # J)-
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Reduction to testing (cont'd)
This theorem gives a lower bound on the minimax risk.
> Intuition: if you cannot distinguish between N alternatives, then your estimation
error also has to be large.
» We can leverage tools for proving lower bounds for hypothesis testing to now
prove lower bounds for estimation.
How tight a lower bound we get depends on how well we choose our alternatives:
> If N is too large, then § may be small and the lower bound will be small.
» If N is too small, then § may be large, but the probability of making a mistake
Ps—p, (¢(S) # j) will be small.
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Proof of RTT Theorem

Proof of RTT theorem. For brevity, denote P;(-) = Ps.p,(-), and E;[-] = Es.p,[].
As L(A, P) is non-negative, we can lower bound R* using Markov's inequality:

R* = inf sup EP[L(A\(S)v P)] = inf max EJ[L(A\(S)’ P

A PeP A JEIN]
. ~ E[Z] .
> ¢ - inf max P;(L(A(S), P;) > 0) Markov’s, P(Z >a)< —— if Z>0
A JEN] a

Claim: Let 13 be the test, where ¥2(S) = argminjcpy; L(A(S), P;). Suppose S ~ P;.

If 4(S) # J, then, L(A(S), P}) > 6.

Then, by this claim we have,

R* > § - inf max P:(L(A(S), P;) > &) > & - inf max P:(¢)+(S %
= I%jeﬁ\)lj J((()v J)— ) > I%jeﬁ\)lj J(wA() J)
>0 -inf max P;(¢(S) # j
= IZJE% J(¢() J)
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Proof of RTT Theorem (cont'd)

Recall:
A(P, Q) = sup{§ >0, L(AP)<s = L(AQ)>4 VAcA,
5

We will now prove the claim.

Claim: Let 15 be the test, where ¥7(S) = argmin; ¢y, L(A(S), P;). Suppose S ~ P;. If

Vz(S) # ji then, L(A(S), P}) > 4.
Proof. Let 1) 2(S) = k # j. First suppose, L(/Z\\(S), Py) < 4. Then, L(/Z\\(S), P;) > 6 by
the definition of J-separation.

~

If L(A(S), Pk) = 0, then as k = 1) 2(S) has the smallest loss among all alternatives, we

~

have L(A(S), P}) > L(A(S), Px) > 4.
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Le Cam’s method for learning from i.i.d data

Le Cam’s method. Let S be an i.i.d dataset of n points drawn from some P € P. Let
{Po, P1} C P such that A(Py, P1) > ¢ and KL(Po, P1) < log(2)/n. Then, Ry > g.

Intuition. For tight lower bounds, we should choose Py, P; to be well-separated in the
loss (large A(Po, P1)). But, they should be statistically indistinguishable (small KL).

Recall, Le Cam’s method: inf max P Pi((S) # j) > ~e KL(Po.Py),
Y jelo,1

Proof. As the data is i.i.d, using the properties of KL, we have

e KL(P§.PY) _ o= nKL(Po.P1) >

I\)M—l

Therefore, by RTT

RX > 6 -inf (W(S >
in Jer?gﬁ} i(W(S) #J) =

OO\sz
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Fano's method for learning from i.i.d data

Local Fano method. Let S be an i.i.d dataset from some distribution P € P. Let
{Py,..., Py} C P such that A(P;, Py) > & and KL(P;, Py) < M) for all j + k.
Suppose N > 16. Then, R; > g.

Recall, Local Fano method: inf m% Pi(¥(S) #J) >
b je

| 1 Xk KL(Py, Pi) + log(2)
log(IV) '

Proof. First note that by the KL property for i.i.d data and the given condition,
KL(P}", Pg) = nKL(P}, P) < %. Therefore,

1
s 5 - NS5 N2
R*>§ 'f}g[a/\)ﬁ Psp,(¥(S) #J) 26 (1 log(N)

(a) 1 log(2)\ ¢
= (1_ 4 Iog(16)> T2

ik log(N)/4 + Iog(2))

Here, (a) uses the fact that N > 16.
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A Corollary of RTT for parameter estimation problems

Let © be a parameter space, and 6(P) be a parameter of the distribution, i.e.,
0 : P — ©. Suppose the action space is A = ©, and the loss takes the form,

L0, P) = dop@,0(P), V& co.

Here, p: © x © — Ry is a pseudo-metric and ® : R, — R is a non-decreasing
function.

E.g.: In Example 1: ®(t) = t2, p(61,62) = |61 — 62|. In Example 2: ®(t) = tP,
p(91,92) = ||01 — esz. In Example 3: (D(t) = t2, p(fl7 fg) = ||f1 — f2||2

Corollary of RTT for parameter estimation. Let {P1,..., Py} CP and let
0 = minjk p(0(P;),0(Px)). Let 6 denote an estimator for . Then,

R* = inf sup Es.p CDOp(é\(S),Q(P))} > ¢ (g) inf max Ps.p, (¥(S) #j) .

8 Pep v JEN]
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Proof of corollary
Recal:  A(P, Q) :sup{(5' >0, LAP)<§ = LAQ) >, VAcA,
LA Q)<Y = LAP) =Y, VAcA}
RTT: If A(P;, P) > ' for all Py,..., Py, then R* > & inf,, max; P; (4(S) # J).

Proof. For simplicity, we will prove the corollary for strictly increasing ®. Suppose
L(0', Pj) = ® o p(0,0(P;)) < ®(5/2) for some 6’ € ©. It is sufficient to show that
Pi,..., Py are ®(5/2)-separated in the loss L. We have,

)
o8.6(P) < 2
= p(¢,0(Py)) > g for all k # As {0(Pi)}icn is a d-packing of ©

— L0, Py) = Do p(d,0(P)) > b (g) .

Therefore, the distributions Pi, ..., Py are ®(6/2)-separated in the loss L.
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Le Cam and Fano methods for parameter estimation

Le Cam’s method for parameter estimation. Let S be an i.i.d dataset of n points
drawn from some P € P. Let Py, P1 € P. Let p(6(Po),0(P1)) > 0. If
KL(Po, P1) < Llog(2), then

Ri(P) > o <g> .

Local Fano method for parameter estimation. Let S be an i.i.d dataset from some
distribution P € P. Let {P1,..., Py} C P such that N > 16, p(6(P;),0(Px)) > 0,
and KL(P;, Px) < log(N)/4n for all j # k. Then,

1 )
*
> — = .

(You can verify these statements at home.)
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Example 1: Normal mean estimation

Let S = {Xi,..., Xy} be drawn i.i.d from some P € P, where
P = {N(u,s?); u € R,s2 < 0} with 02 known. We wish to estimate the mean
O(P) = Exp[X]. Let the loss be ® o p(61,6) = (61 — 62)2.

First, we will choose Py = N(0,02) and Py = N(6,02?).
We have separation p(0(Po),0(P1)) = |0(Po) — 6(P1)| = 9.

We also have, KL(Po, P1) = 25 (recall KL(A (11, 02), N (p12, 02)) = (1 — p2)?/(202)).

We need, KL(Po, P1) < Llog(2), so choose § = a\/i LEQ).

Then, 2 2
R*ZéCD (5) 16°  log(2) o

n

84 16 n’
The sample mean achieves risk Varp(X)/n < ?/n, and hence 2 /n is the minimax
rate.
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Example 2: Mean estimation in a bounded domain
Let {Xi,...,X,} be drawn i.i.d from some P € P, where P = {P;supp (P) C [0,1]}
contains all distributions in [0, 1]. Let the loss be ® o p(61,62) = (1 — 62)2.
Lower bound. Choose Py = Bern(1/2 + ¢) and P; = Bern (1/2). Therefore,

separation is §. Using the KL < x? inequality, we have, KL(Pq, P;) < % = 452,

We want KL(Py, P1) < logn(2), which is satisfied if we choose § = 3 Lgrsz).
Therefore, RE > lq) <5> B lf _ log(2) 1

n=g"\2) 84 128 n

Upper bound. Using the sample mean, the minimax risk can be upper bounded by,

: ~ Varp(X 1
Ry = inf sup R(6, P) < sup R(sample-mean, P) = sup Varp(X) -,
0 PeP pep Pcp n 4n

Hence 1/n is the minimax rate.
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Example 3: A simplified regression problem

Let S = {(X1, Y1),-..,(Xn, Yn)} where X; ~ Unif (0,1) and Y; is drawn from a
distribution with mean f(X;), and variance bounded by o?. We will assume that the
regression function f(-) = E[Y|X = -] is bounded in [0, 1] and is L-Lipschitz.

Therefore,
P = {Pxy; Px = Unif (0,1),
f(-) = E[Y|X = ‘] is L-Lipschitz and bounded between 0 and 1
Y|X has variance bounded by 02}

We wish to estimate 6 = f(1/2) = E[Y|X = 1/2] under the squared loss
®op(01,07) = (01 — 92)2.
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Example 3: A simplified regression problem (cont'd)
Lower bound. To apply LeCam’s method, let

Py : Po(Y|X = x) = N(fo(x), ?),
P1 . Pl(Y’X = X) = N(fl(x),oz).
Therefore, § = |8(Po) — 6(P1)| = |%(1/2) — A(1/2)].
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Example 3: A simplified regression problem (cont'd)

SRR
b0

m————
VARV ’

[/ [

59 =t

o

We will choose,

L(1/2—x)+6 ifxe(1/2,1/2+ /L),
f(x)=0, AKX)=<Lx—1/2)+6 ifxe(1/2—5/L,1/2),

0 otherwise.

Hence, my separation is 9.
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Example 3: A simplified regression problem (cont'd)

Let us now upper bound the KL divergence between the two distributions:

= | [ty '°g< o)
=y [rrameren (GESEES) e
As po(x) = pi(x) =
] ot e (2892

=KL(N(fo(x),02), N (fi(x),0?))
Denoting the normal pdf by ¢.

1 1 )
= [ 552 (6~ i) x
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Example 3: A simplified regression problem (cont'd)

Recall, L(1/2—x)+6 ifxe(1/2,1/2+5/L),
A(x)=0,  A()={Lx—1/2)+6 ifxe(1/2—6/L1/2),
0 otherwise.

1
KL(Po.P1) = | 53 () = f(x))*

1 1/2 1/245/L
=— / L(x—1/2+5/L)2dx+/ L(1/2 +6/L — x)%dx
20\ J1j2-o/L 1/2
1/2 1/246/L
O P OV R T/ R T VC ot /0
- 202 3 3
1/2-6/L 1/2
53
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Example 3: A simplified regression problem (cont'd)

3
O'2L

We just showed KL(Py, P1) =

We want KL(Py, P1) < IOg( ) so choose § = WL;#. Therefore,

R*

n

v

1 /6 162 o*/312/3
8 ( ) 8 4 n2/3

N.B. We require 6 <1 and /L < 1/2 (see our construction), as f : [0,1] — [0,1]. So
this lower bound applies only when n > max(302L log?(2), 240 log(2)/L?) (larger than
some constant).
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Example 3: A simplified regression problem (cont'd)

Upper bound. In Appendix A, we show that the following nearest neighbor estimator
9 for (P) = Ep[Y|X = 1/2], achieves R(6,6) € O (“4/3L2/3>, so n=%/3 is the

n2/3

minimax rate for this problem.

Let h be a parameter to be chosen later (to balance bias/variance),

N:Zn:]l(x,-e(lﬂ—h, 1/2+h)),
i=1

1/2 if N =0,

0(S) =3 1 ¢
NIZ;Yi]l(X,- €(1/2—h, 1/2+ h)).

4(S) = clip (5(5), 0, 1) .
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Why is Le Cam’s method (binary testing) insufficient?
LeCam’s method is useful only in relatively “easy” settings. For instance, they work
well for point estimation problems, i.e estimating a single parameter of a distribution.
In HW1, you will also apply it for estimating a categorical distribution.

However, as the following example illustrates, it does not always work well when there
are a large number of estimable parameters.

Normal mean estimation in R?. Let P = {N (1, X);n € RY, %, ; < 02}, and 02 is
known. We wish to estimate the mean 0(P) = Ex.p[X] in the L, norm:

® o p(61,062) = [|61 — 62]]3, p(01,02) = |61 — b2]2, ®(t) =t

o~

Upper bound: We can consider the sample mean, §(S) = >"" ; X;. Then,
d

~ ~ 1< 2 o2d
RE.P) —E[1(5) — 0(P)IE] = 3 ( S, - e,-) 79,
j i=1

J=1
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Why is Le Cam’s method (binary testing) insufficient? (cont'd)

Lower bound: Let us try applying LeCam’s method. Let,

Py = N'(04,5°%ly), Py =N(dv,0°ly), for some v such that ||v|» = 1.

We have, KL(Py, P1) = 5. So choose § = ZIOg( ) so that KL(Po, P1) < log(2)/n.

Therefore, (via the exact same calculations in Example 1), we have, the following lower
bound which is off by a factor d.

2
R*>1d> 0 >|Og(2)(L
"= 8 2/~ 16 n
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Why is Le Cam’s method (binary testing) insufficient? (cont'd)
/}

N R :/\]“VI rlr-)
. _ _ ' wee W1, =1
Intuition: The estimate can be wrong in many di- G

rections. But Le Cam’s only allows you to capture ~ |
one such direction.

To get the right rates, we need to reduce this esti- — P
. . . . 0
mation problem to multiple hypothesis testing. p

Key challenge. We can apply Fano's method for multiple testing, but constructing
alternatives for Fano's method usually requires more work than Le Cam’s.
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Constructing alternatives for Fano's method

We will look at two methods:
1. Tight packings
2. Gilbert-Varshamov Bound

We will start with tight packings.

Packing number. Let (X, p) be a pseudo-metric space and let AC X'. Let e > 0. A
set P C A'is called an e-packing of A if, p(x, x") > € (note strict inequality) for all
x,x" € P such that x # x'.

The e-packing number M(e, A, p) is the size of the largest e-packing of A.
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Example 4: Normal mean estimation in R¢

mean 0(P) = Ex.p[X] in the Ly norm:

Let P = {N(u, X);u € RY % ; <02}, and 02 is known. We wish to estimate the

® o p(61,62) = |61 — 62|13, p(01,02) = (|61 — 022, () = t2.
We will establish a lower bound via the following 4 steps.
Recall the following Theorem. Let X = R and let || - || be any norm. Let
B = {x € RY; |[x|| < 1} be the unit ball. Then, (1) B < N(e AL ) < M(e A ).

Let U be a maximal § packing of the L, ball of radius 26 in RY. Let
P ={N(u,0%ly);ucl}.
By the theorem above, [P'| >= (})

d vol(26B d (26)9vol(B
vo(l(B)) = (%) ( v)ol(Bg b= 2d,

Moreover, for any u, v’ € U, we have ||u— u'[|2 > . Hence, the separation is at least ¢.
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Example 4: Normal mean estimation in R? (cont'd)

Recall, Local Fano for parameter estimation. Let S be an i.i.d dataset from some
distribution P € P. Let {Py,..., Py} C P such that N > 16, 6 > p(6(P;),0(Px)), and
KL(Pj, Px) < log(N)/4n for all j # k. Then, R} > ;dD (g) .

Next, let us upper bound the KL divergence. For any P, = N'(u,?l) and
P, = N(u',0%1), we have

lu— |3 (46) 862
KLPuP) =5 S S =02
radius 29

We require KL(Py, Py) < M for all u # u'. As we showed that |P'| > 29, it is
sufficient if we choose, § = o4/ d|§>2g(2) Therefore, by the local Fano method,
1 (6 162 o?d
RE>-o(2) =22 =c. 22,
2 <2> 24~ Th

This achieves the correct rate of d/n. As we need to satisfy the N > 16 condition, the
lower bound is valid when d > 4. 70/86



Gilbert-Varshamov Bound

Often3, it is convenient to consider alternatives in a hypercube in the following form,

P,:{Pw;w:(wl7"'7Wm)€{0’1}m}C,P'

But in this hypercube, the minimum distance between alternatives will be small

relative to the largest KL.

Let us revisit our normal mean estimation example, but consider the following

alternatives:

P = {N(éw,azld);w e {0, 1}d} ,
We have,
min p(0(P,),0(P,)) = min |6w — 6’| = 6.

) B

max, . [|[dw — 6w'[|3  dé?

202 202

maxKL(Pw, Pw’) = = —.
w,w’

3We will see several examples in the next two chapters.
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Gilbert-Varshamov Bound (cont'd)

Recall, Local Fano for parameter estimation. Let S be an i.i.d dataset from some
distribution P € P. Let {P1,..., Py} C P such that N > 16, 6 > p(0(P;),0(Px)), and
KL(P;, P) < log(N)/4n for all j # k. Then, R} > 3¢ (2).

We just showed:  miny, s p(8(P.), 8(P.r)) = 0, maxy, o KL(Py, Py) = %.

log(|P']) __ dlog(2)
4n - 4n

We want the max KL to be smaller than

So choose, § = o '°%E,2). This gives,

2 2
R:2;¢<5)_6x0.

So we don't get the d factor.
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Gilbert-Varshamov Bound (cont'd)

Why does this happen? The max KL is large relative to th2e min distance:
ming . p(O(P.), O(P.)) = 6, max,, ' KL(P,, P) = &2

— 202°
We can try removing elements from this cube to make the distance large, but then the

number of alternatives will become too small. We still need exponentially many
alternatives to get a tight lower bound.

By
{U\AD"“"S Veices X

The GV bound says that we can find a large subset of {0,1}™ so that the minimum
distance is large.
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Gilbert-Varshamov Bound (cont'd)

The Gilbert-Varshamov Bound is a classical result in coding theory. The following is
one version of this result.

Theorem, Gilbert-Varshamov bound. Let m > 8. For any two w,w’ € {0,1}™, let
H(w,w') =31 1(w; # w!) denote the Hamming distance.
Then, there exists Q,, C {0,1}™ such that

> Q| > 2m/8,
» for all w,w’ € Qpy, we have H(w,w') > m/8.
» 0, € Q.

We will refer to £2,, as the Gilbert-Varshamov pruned hypercube.
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Example 4 revisited: Normal mean estimation in R?
Let P = {N(u,X);u € RY E;; <02}, and 02 is known. We wish to estimate the
mean 0(P) = Ex.p[X] in the Ly norm:

® o p(6,02) = |61 — 62113, p(01,02) = |01 — 022, ®(t) =

Lower bound. Let us consider the following alternatives,
= {N(éw,azld);w €Qq},

where Qg is the Gilbert-Varshamov pruned d-hypercube.

We then have,

min P( (Pw)aH(Pw’)) = mln ”(5(4.) — 0w’ H
w,w' €Ny w,w

=4J min H(w,w")

w,w'€Qy
> §+/d/8. By Gilbert-Varshamov bound

So the separation is §1/d/8.
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Example 4 revisited: Normal mean estimation in R9 (cont'd)

Recall, Local Fano for parameter estimation. Let S be an i.i.d dataset from some
distribution P € P. Let {P1,..., Py} C P such that N > 16, p(6(P;),0(Px)) > 6, and
KL(P;, P) < log(N)/4n for all j # k. Then, R > 1o (2).
Now, let us compute the maximum KL,

max,, . [|6w — 6w'||3  dd?

e

IOgEJP’\) _ (d/82t'°g(2). So choose,

We want the max KL to be smaller than
d=o0 |og(2)_ This gives,

16n
res Lo (&/;//8) 52d  log(2) do?

n 2 -

64 1064 n

2 . ..
Therefore, % is the minimax rate.

N.B. We require N > 16, i.e, 29/8 > 16. So this applies only when d > 32.
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Summary
Let us quickly summarize how we prove lower bounds for learning problems.

> Reduce estimation to hypothesis testing (RTT): For alternatives that are
d-separated in the loss L,

R* = inf sup Esp [L(Z(S), P)} > 6 - inf max P;(¢) # j).
A PcP ¥ jelN]

Parameter estimation: for alternatives that are -separated in some metric p,

~ 1)
R* = inf Es.p |® P >d (= )inf ; ).
nfsup s [0 p(0(P). ()] = @ () inf max (v )

» LeCam’s method: reduces to a binary hypothesis testing problem:

Pj N = 5 (P P 1)) > Z||PoAPy|| > =e KL(Po.PY),
max Pl #)) 2 5 (Po(0#0)+ P # 1) = SllPAR = ze
max=avg NP-test

Useful mostly for point estimation problems. 77/86



Summary (cont’d)

» Fano's method: reduces to a multiple hypothesis testing problem:

max Pj(w 7£./) > P\/’s'(w# V) > 1— I(V?5)+|Og(2)

JelN] S~ —————— >~ log(N)
max~avg % jI\I:1 Pj(w?ﬁ_/) ano s Inequa Ity

By bounding /(V,S) we get the global and local Fano methods.

» Need to construct alternatives {Px, ..., Py} for the local Fano method carefully,
using tight packings or the Gilbert-Varshamov bound.

» Four steps to establishing a lower bound:
1. Construct alternatives.
Lower bound the separation.

Upper bound the KL divergence.

Ll

Compute the lower bound.
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Plan going forward

We will prove lower bounds for the following problems:
» Ch 2.1: Nonparametric regression (lower and upper bounds)
» Ch 2.2: Nonparametric density estimation
> Ch 3: Lower bounds for excess risk based prediction problems.

» Ch 4 onwards: lower bounds for stochastic/adversarial bandits, mostly using the
Bretagnolle-Huber inequality.
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Appendix



Appendix A: Upper bound for Example 3

Upper bound. (Read at home)
We will design the following nearest neighbor estimator 6 for 0(P) =Ep[Y|X =1/2].

N:ann(x,-e(l/z—h, 1/2+ h)),
i=1

B /i/;Yijl(X,-E (1/2=h, 1/2+ h)).
0(S) = clip (5(5)7 0, 1) :

6(S)

We will specify the value of h shortly.
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Appendix A: Upper bound for Example 3 (cont'd)
Note that N is a Binomial (n, 2h) random variable. Let us define G = {N > hn} to be
the “good event” in which a sufficient number of points fall within the
[1/2 — h,1/2 + h] interval. We have, by Hoeffding's inequality,

P(G€) =P (Z 1(X; € (1/2 — h, 1/2+ h)) < nh)
i=1

—P (zn:(n(x,- € (1/2—h, 1/2+ h)) —2h) < —nh) < e 2,

=
We can now write,
E[(B(S) - 0)°| <E [(0(S) - 0)?]
—E [(5(5) - e)ﬂc} P(G)+ E [(5(5) - 9)2‘ GC} P(G°)
N

<1 <1/4 as f is bounded in [0,1] <e—2nh?
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Appendix A: Upper bound for Example 3 (cont'd)

To upper bound E[(A(S) — 6)2|G], let us denote A; = 1(X; € (1/2 — h,1/2 + h)) and
expand (6(S) — 6)? as follows:

(5(5) —9)2 - GIE”:A,-Y,- - 9)2
i=1

n N 2
= <LZA,-(Y,- - f(Xi))+%ZAi(f(Xi) —9)>
i=1 i=1
Y b

= v2 4+ b% + 2bv.

You may interpret b as the bias and v? as the variance. The quantity v captures the
extent to which the observations Y; deviate from their expected values f(X;), while b
quantifies the deviation of § = f(1/2) from the surrounding f(X;) values, as we

consider an interval around 1/2.
83/86



Appendix A: Upper bound for Example 3 (cont'd)

Now, let us bound the individual terms. We will start with v.

; 2
i=1

G, X1,..., Xn

SN
=E|E |15 > A (Y= f(X))?|G. X1, X
L L i=1
Cfy
=FE |E mZA,-VM(Y,-yx,-) G, X1,...,Xn Note that E[Y;|X{] = £(X;)
L L i=1
[ -O'ZN o2
= —_ —. > .
E (E B G = As N > nh under G
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Appendix A: Upper bound for Example 3 (cont'd)
Next, let us consider b. For any X; € (1/2 — h,1/2 + h), we have

[£(Xi) — F(1/2)] < L|X; —1/2| < Lh.

Hence,

b =

N N
1 1
< — Alf(X) -0l < — AiLh = Lh.
Ay,

1 N
N ZAi (f(Xi) - ‘9)
i=1

Therefore, E[b?|G] < L2h%.
Finally, let us consider the cross-term. As E[Y;|X;] = f(X;), we have,
LN

=N A(F(Xi) - 0)

i=1

E[bv|G] =E |b - Ey G, X1,.... %, | | =0.

=
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Appendix A: Upper bound for Example 3 (cont'd)

Therefore,
ag

~ 2 2
E {(9(5) - 9) ] < e T PR,

. 2/3
Choosing h = 8737,/11/3 we get

~ 2 _2g4/3 s o4/312/3
E [(9(5)—9) } < exp <L4/3”/ +20
Therefore, the bound is tight in L, o if we know L, o.

If L, o are unknown, we can still choose h = n~1/3. Then, it is still tight in n,
~ 2 1
1/3 2 2
E[(G(S)—H) } <exp (—2nV) + = (L2 +0%).

N.B. Had we used Chernoff's instead of Hoeffding's to control P(G€), we would have

. . 1/3
a slightly faster rate in the lower order e™" ” term. 86/86



