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Introduction

Nonparametric methods: Learn in a function class which cannot be completely
characterized by a finite number of scalar parameters.

Examples in regression:

» Nonparametric: the class of all Lipschitz-continuous functions,
{f:1f(x) = F(x)] < Llx = X||2}-

» Parametric: Linear class, {f;f(x) =0T x, for some § € R7}.
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Ch 2.1: Nonparametric regression

Model: Let F be the class of bounded L-Lipschitz functions in [0, 1].
F={f:0,1] = [0,1],[f(a) — f(x2)| < LIx1 — x|}

We observe an i.i.d dataset {(X1, Y1),...,(Xn, Yn)} drawn i.i.d from P € P where,

P = {P; 0 < ap < p(x) < a1 < 0o, where p(x) is the marginal of x
the regression function f(-) = E[Y|X =] € F,

Var(Y|X = x) < o2, for all x € [0, 1]}.
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Nonparametric regression (cont’d)

We wish to estimate the regression function in the following loss. For any g € RO,
e, P) = [(F(x) ~ g())p(x)dx,  where, £(-) = Ea[Y|X =]

The minimax risk is,

~

R} = inf sup Es.pa[L(f(S), P)] = inf sup Es.pn {/(?(S)(x) — f(x))?p(x)dx]| .
F PP F PP

We will show that the minimax rate is ©(n~2/3).
- Lower bound via Fano's method.
- Upper bound via the Nadaraya-Watson estimator.
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Ch 2.1.1: Lower bounds for nonparametric regression

To apply our lower bound techniques, we cannot write the above loss in the form ® o p
where p is a metric Hence, let us consider P” = {P € P; p(x) = 1} C P. Then, we
can lower bound the minimax risk by

/ (F(x )2dx]

¢op(f f)

Ry > inf sup Es.p
f pPCPV

where, p(f,g) = ||f — g||2 and &(t) = t2.

Recall, Local Fano method. Let S be an i.i.d dataset from some distribution P € P. Let
{P1,..., Py} C P such that N > 16, p(8(P;),0(Px)) > 9, and KL(P;, P) < log(N)/4n for all
j# k. Then, R¥ > 10 ().

We will apply Fano's method in the following four steps: 1) Constructing alternatives. 2) Lower
bound the minimum separation. 3) Upper bound the maximum KL. 4) Obtain final bound.
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Step 1: Constructing Alternatives

Let us consider the following function,

x+1/2, xe[-1/2,0],
b(x) = —x+1/2, xe[0,1/2],
N 0 otherwise.

Note that, ¢ is 1-Lipschitz, and [¢? = 1/12.
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Step 1: Constructing Alternatives (cont'd)

Let h > 0 be a parameter to be chosen later. Let m = 1/h.
Let w € {0,1}™. Let us define f,, as follows:

Bi(x) = Lo (UZAN) £, = Y wigy(x)
j=1

b 5

- ~ \ 2, ~
— > 0 Y T 7o

0 ‘/M L/V\ % M/M

We will show that each f,, is L-Lipschitz:
- f,, is 0 at the boundaries (1/m,2/m,...).
- It is sufficient to check Lipschitzness within each bump ¢;.

- The gradient of ¢; is |¢/(t)| = Lhw(M) ,1,‘ =L
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Step 1: Constructing Alternatives (cont'd)

Alternatives: Let Q,, be the Gilbert-Varshamov-pruned m-hypercube. Define

F' ={fs;w e Qn},
P’ = {P;p(x) is uniform , f(-) = E[Y|X = ] € F/,
YIX = x ~ N(f(x),0%)}.

As F' C F, we have P’ Cc P" C P.

Let P, be the distribution in P’ whose regression function is f,. Let p, be its density.
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Step 2: Lower bounding the separation

For any w,w’ € Q,,,, we have

Now, let us consider the integral,

/J_Jm1 ¢; = /J_Jm1 12242 (X_(J_l/z)h> e — /_1/2

h

12 12
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Step 2: Lower bounding the separation (cont'd)

Recall, Gilbert-Varshamov bound. In the Gilbert-Varshamov pruned m-hypercube 2, of
{0,1}™, we have, (i) |Qn,| > 2m/8, (i) H(w,w') > m/8, Yw,w' € Qm, (iii) 0 € Q.

Therefore,
26, £) = Hiw o)
p((m w’)_ (w,w)?.
By the Gilbert-Varshamov bound, H(w,w’) > @ = &

Therefore, the separation can be lower bounded by,

Lh A

minp(f,,fy) > — =96
min p(fo, fr) N
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Step 3: Upper bounding the KL
Let p,, p.s be the joint densities for any w,w’ € Q,,, respectively. Then,

KL(Pwa’Dw’):/ Pw|0g<pw>
XxY P’

yaRcCh y‘x>'°g<p”:§§§2:({y’fﬁ>>dydx

= /1 KL (N (£,(x), o), N (£ (x) 02)) dx = 1/1(f (x) — fi(x))*dx
0 w ) ) w ) 20_2 0 w w
1 [

= T‘zj_l L(wj # wj) /m (WJ¢J WJ¢J)2

= . Similar calculations to separaion.
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Step 3: Upper bounding the KL (cont'd)

As max, . H(w,w') < m=1/h, we have

L2p?
T’i)/(KL(Pw,Pw/) S Tg’z
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Step 4: Obtain final bound

Recall, Local Fano method. Let S be an i.i.d dataset from some distribution P € P. Let

{P1,..., Pn} C P such that N > 16, > p(60(P;),0(Px)), and KL(P;, Px) < log(N)/4n for all
j# k. Then, Ry > 1 (3).

Recall, Gilbert-Varshamov bound. In the Gilbert-Varshamov pruned m-hypercube 2, of
{0,1}™, we have, (i) || > 2™/8, (i) H(w,w') > m/8, Yw,w' € Qp, (iii) 0m € Q.
We need maxg, 5, KL(P., Por) < BUPD AP/ > 2m/8 it is sufficient if,

L2 h? < log(2™/8) _ log(2)

2402 = 4n 32nh’

Therefore, choose h as follows,

L <3|og(2)>1/3 %/

4 nl/312/3"
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Step 4: Obtain final bound (cont'd)

This gives the following 6,

1/3,.2/3
s th _ b
V96 nl/3

By the local Fano method, we have obtain the following lower bound on the minimax
risk,
1 1) [2/354/3
R* —_

We require N > 16, which is satisfied if we have a sufficient number of samples,

2/3 1 2
m/8 m_1 o o 1 o
N>16 < 2 > 16 — 3 8h24<=h C3n1/3L2/3§32<:n2C4L2'
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Ch 2.2: Upper bound

We will define the following estimator £
Let h > 0 be a bandwidth parameter whose value we will specify shortly.

N(t) = Z 1(X; € (t = h,t + h)),
i=1

1 if N(t) =0,
f(t) = 2 1 <& .
N(t)’z_;YiI[(X;G(t—h,t—I—h)) if N(t) > 0.

f(t) = clip (£(t),0,1) .
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Good events

To bound err; define Gy = {N(t) > agnh}. to be the "good event” in which a
sufficient number of points fall within the [t — h, t + h] interval. We have, by
Hoeffding's inequality,

P(Gf) = (ZﬂXe(th t+h)<a0nh)

i=1

<P (i(ﬂ(X; e(t—ht+h)—P([t—ht+h])) < —aonh)
i=1

as P([t—h,t+ h]) = / p(t)dt > 2agh.
Je—n

< exp(—2a(2)nh2). Using Hoeffding’s (1)
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Bounding the Risk

To analyze this estimator, we will first upper bound the risk as follows,
R(P,F)=E [ /0 (Fe) - f(t))%(t)dt]
1 o~
SalE[/ ( (t)—f(t))zdt] As p(t) < ay.
0
1 ~
_ al/o £ [(F(e) - F(1))?] at

~~

err¢(f)

Let us now write,

~

erre(F) = E [(7(e) — (&)
E[(F(t) - £(8))?

~

G| B(G) +E [(F(t) - F(1))?

<1 <1 as f is bounded in [0, 1] Se—2a(2)nh2

Ge| P(GE)
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Bounding the error under the good event

To upper bound E[(?(t) — £(t))?|Gy], let us denote A; = 1(X; € (t — h, t + h)) and
expand (f(t) — f(t))? as follows:

(F)— ()" < (F() ~ F(1)* s (o) = lin(F(2).0.1)

n

2
1
= (I\I(t) Z (AYi — f(t))>

i=1

1 o 2
- (I\I(t);Ai(Yi — f(x,-))+WZA;(f(X,-) - f(t)))

v b
= v? + b% + 2bv.
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Bounding the variance

Let us decompose the variance v at t as follows:

- ] )
1
2 _ (Y — .
E[v?|G] =E |E (N(t)ZA,(Y, f(X,))) Ge, X1, .-, Xn
O |g| ! Z (AY;: = F(X))? | Ge, X, -, X
N(t)2 ty 17“’ Y
1 n
=F ’\W;Ai Var(Y;|X;)|Ge Note E[Yj|Xi] = f(X;)
o2 N(t o?
<E /V(t()z) < aonh As N(t) > agnh under G;.
Above, conditioning on X1, ..., X, allows us to claim that the cross-terms are 0 in (a).
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Bounding the bias

Next, let us consider the bias b. For any X; € (t — h, t + h), we have
IF(X;) — f(t)] < L|X; —t] < Lh.

Hence,
|b| = Nit)ZA,(f(X,) F(t)) sNzt)ZA;If(X;)—f(t)l
i=1 i=1
< I\/it)iz_n;A'Lh =Lh

Therefore, E[b?|G;] < L2h.
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Cross-term

Finally, let us consider the cross-term. As E[Y;|X;] = f(X;), we have,

E[bv|G] =E |b - Ey Ge, X1,.... X, | = 0.

1 n
N(t);A:(YI - f(Xi))
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Putting it together

We have shown,

R(P,f) < a1 /OlE {(?(t) - f(t))ﬂ dt

err:(F)
erre(F) = B[ (F(r) — £(1))%|Ge] B(G) + E [ (F(r) - F(1)?| 65| B(G¢)
=(b+v)? <1 <1as f is bounded in [0,1] <q—2aqnh?

1 n
bl < S AiLh= Lh,
W) 2

2
E[v?|Gl < T
ViG] <
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Putting it together

This gives us,
A 2,2 02 2 h2
errt()SLh +7h+e*aon .
n

And hence,

~ 2
R(P,f) < ag <L2h2 + % + e2aonh2) _

. 2/3
Choosing h = %57, we get

~ o4/312/3 54/31/3
R(P.f) < 2a1=—5— + arexp [ —2a0—57— |-

This shows us that the minimax rate for this problem is ©(n=2/3).
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The Nadaraya-Watson (Kernel) Estimator

An estimator of the following form,

4 L o\ =X
F(t) = > wi(t)Yi, where,  w;(t) = { so,k(50) if > K ( h 1) > 0,

i=1 0 otherwise

Here,
» K:R — R is called a smoothing kernel.
» In our estimator, K(t) = 1(|t| < 1). This is sufficient for Lipschtiz smoothness.

» But other kernel choices lead to better rates under stronger guarantees.
E.g. In the Holder class H(3, L) in RY, where all (8 — 1) partial derivatives are
25

L-Lipschitz, the minimax rate is ©(n25+d).
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Ch 2.2: Nonparametric density estimation
Model: Let F be the class of bounded L-Lipschitz functions in [0, 1],
F=A{f:[0,1] = [0, B, [f(x1) = f(x2)| < L|x1 — xa[}.

Let P be all continuous distributions whose pdf is in F.

We observe n samples S = {Xi,...,X,} drawn i.i.d from P € P and wish to estimate
the density p in the L; loss,

&0 p(pr,p2) = llp1 — P23 = / (b1 — P2)’.

We will show R* € ©(n~%/3) where,

R} = inf sup Es [[|A(s) — pll3] -
P peF
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Ch 2.2.1: Lower bounds for density estimation

Step 1: Constructing Alternatives. Let us consider the following function,

Fiay
/N
) x+1/2, ifxe[-1/2,-1/4],
) =x, if x € [-1/4,1/4],
Za i = x—1/2, ifxe[l/4,1/2],
0 otherwise

You can check that,
> 1 is 1-Lipschitz.
> fw =0
» 2 <y(t) <L
> f¢2 =1/48.
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Step 1: Constructing Alternatives (cont'd)

Let h > 0 be a parameter to be chosen later. Let m =1/h.
Let w € {0,1}™. Let us define f,, as follows:

¢j(x) = Lhy (X_(Jh_lp)h) , Pu(x) =1+ Y widj(x).
j=1

——t—t—t——t
—_—t——t—t——t— o Yu Za Yea o m

You can verify that

» Each p, is L-Lipschitz (similar calculation as before).
» Each p, is a valid density ([ p, =1 and 0 > p,, > B) provided that
h < $min(B—1,1).

Alternatives: Let 7' = {f,;w € Q,} where Q,, is the Gilbert-Varshamov-pruned
m-hypercube.
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Step 2: Minimum Separation

For any w,w’ € Q4, we have

m

1/2
I — porlB = 3 1w # )20 / o wa
=1 -

12h3 ,

By the Gilbert-Varshamov Lemma, min, s H(w,w’) > m/8 = 1/(8h).

Therefore, we have

lpw — purlla = [ S i LD 2 seeparati
mln 2 = mln (AJ LL) —— = Separation
poper | Pe T P " 8v6 P
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Step 3: Upper bounding the maximum KL
To upper bound the KL divergence,

j/m 1+ wio; )
) Z/ (1+wjo))log <1+wj’¢j> 1(wj # wj)

(G=1)/m

KL(pw, pur) = /pw log (

A(wj,wj)
Next, you can show (after some algebra), that when w # w’-,
1/2 L2h3
Alw;, wh) < L2H3 Y? =
( ] j) 1/2 48
Hint. Use inequalities log(1 + x) > x — x? for x > —0.68 and log(1 + x) < x.
Therefore, KL(py, por) < %H(w,w’). As, max, £, H(w,w") < m=1/h, we have

L2h*
KL )< =,
Pw 7r;]wa/)€(H/ (pw’ pw ) B 48
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Step 4: Final Bound

We require the maximum KL to be smaller than %. But we know | F'| > 2m/8,

So it is sufficient if
L2h* _ log(2™/8)  log(2)

48 4n 32nh’
So choose,
h— 3log(2) 1 1/3
a 2 nl2 '
By the local Fano method, we obtain the following lower bound on the minimax risk,
Ly (0 _ 22 L2/3
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Requirements

Requirements:
» h < 7min(B —1,1), for it to be a valid density.

» - = m > 8 for Gilbert-Varshamov.

Il

» 2m/8 > 16, which is satisfied if h < 1/32.

» h <272/L, an inequality we used.

These conditions are satisfied if n is sufficiently large.
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Ch 2.2.2: Upper bound via Kernel Density Estimation

A kernel density estimator p with kernel K and bandwidth parameter h (to be chosen
shortly) has the following form,

. I~1l, [t—X
0=, 3 5k (7).

Here, K : Ry — R, is a smoothing kernel with the following properties,

/K(u)du =1, K(u) = K(—u).

#
(D) N RARX XAEN KN
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Boxcar Kernel

For our problem, we will use K(u) = 1(|u| < 1/2).

1

» This kernel is sufficient for Lipschitz functions.

> In HW2, you will analyse KDE for densities whose first derivative is Lipschitz.
Then, we need to use a different kernel.
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Bias—Variance Decomposition

Let us decompose the risk as follows,
E [Ip - pl3)
=E [/(p - ﬁ)z]
—&|[o-5aP+ [@-52+2 [(o-ER(ES - )
— [ (0~ Bp)R de + [ E[(p(e) - Ep(e))?] e+

bias?(t) var(t)

2 [ ((t) = B(e) EI(e) - Ep()] e

=0
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Bounding the Bias

Let us first bound the bias,

bias(t) = E[B()] - p(t) = Ex-p [},K (X; t)} — p(t)

://17K (Xht> p(x)dx —p(t)/K(u)du

= [ K(@)p(t + uh) ~ p(e))du

Therefore, noting that [ |u|K(u)du = 1/4, we have

Ibias(t)] < /K(u)\p(t—i— uh) — p(t)|du < /K(u)Lh\u\du - %Lh.
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Bounding the Variance

Let us next bound the variance.

var(t) = Var (B(t)) = Var (1 RE —hx,-)>
1
< (

1
- X
:VarXNp< K t p )) as the terms are i.i.d
1 1 X —t
< ZE|=K?
<32l (55)
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Putting It All Together
Putting these bounds together we get,

E[llp - 5l3] =

Choosing h = n~Y/3L71/3 we get
12/3
~12
E[llp—-pl3] € O (/12/3) .
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Boundary correction

» The bounds for bias(t) and var(t) are valid only within the interval [h, 1 — h].

> In the analysis above, we may ignore this issue (i.e., assume the worst-case error)
and still obtain the correct convergence rates.

> For higher-order smoothness assumptions, however, this boundary error may no
longer be negligible.

» A common remedy is to mirror the data at the boundaries, which is effective when
the underlying density has zero derivative at the boundary.
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